Nuprl Lemma : l-ordered-equality
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (∀as,bs:T List.
     (l-ordered(T;x,y.R[x;y];as)
     
⇒ l-ordered(T;x,y.R[x;y];bs)
     
⇒ (as = bs ∈ (T List) 
⇐⇒ ∀x:T. ((x ∈ as) 
⇐⇒ (x ∈ bs))))) supposing 
     ((∀x,y:T.  (R[x;y] 
⇒ (¬R[y;x]))) and 
     (∀x:T. (¬R[x;x])))
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
l_member: (x ∈ l)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
or: P ∨ Q
, 
guard: {T}
Lemmas referenced : 
no_repeats-before-equality, 
l-ordered-no_repeats, 
l_member_wf, 
l-ordered_wf, 
list_wf, 
subtype_rel_self, 
istype-void, 
istype-universe, 
l_before_wf, 
l_tricotomy, 
l_before_member2, 
l_before_member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
rename, 
lambdaFormation_alt, 
extract_by_obid, 
isectElimination, 
independent_isectElimination, 
because_Cache, 
hypothesis, 
independent_pairFormation, 
productElimination, 
independent_functionElimination, 
equalityIstype, 
functionIsType, 
productIsType, 
universeIsType, 
applyEquality, 
instantiate, 
universeEquality, 
unionElimination, 
hyp_replacement, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}as,bs:T  List.
          (l-ordered(T;x,y.R[x;y];as)
          {}\mRightarrow{}  l-ordered(T;x,y.R[x;y];bs)
          {}\mRightarrow{}  (as  =  bs  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:T.  ((x  \mmember{}  as)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  bs)))))  supposing 
          ((\mforall{}x,y:T.    (R[x;y]  {}\mRightarrow{}  (\mneg{}R[y;x])))  and 
          (\mforall{}x:T.  (\mneg{}R[x;x])))
Date html generated:
2020_05_20-AM-08_09_34
Last ObjectModification:
2020_01_17-AM-10_30_59
Theory : general
Home
Index