Nuprl Lemma : l-ordered-equality

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (∀as,bs:T List.
     (l-ordered(T;x,y.R[x;y];as)
      l-ordered(T;x,y.R[x;y];bs)
      (as bs ∈ (T List) ⇐⇒ ∀x:T. ((x ∈ as) ⇐⇒ (x ∈ bs))))) supposing 
     ((∀x,y:T.  (R[x;y]  R[y;x]))) and 
     (∀x:T. R[x;x])))


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) l_member: (x ∈ l) list: List uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T all: x:A. B[x] not: ¬A implies:  Q false: False iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B l-ordered: l-ordered(T;x,y.R[x; y];L) or: P ∨ Q guard: {T}
Lemmas referenced :  no_repeats-before-equality l-ordered-no_repeats l_member_wf l-ordered_wf list_wf subtype_rel_self istype-void istype-universe l_before_wf l_tricotomy l_before_member2 l_before_member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality voidElimination functionIsTypeImplies inhabitedIsType rename lambdaFormation_alt extract_by_obid isectElimination independent_isectElimination because_Cache hypothesis independent_pairFormation productElimination independent_functionElimination equalityIstype functionIsType productIsType universeIsType applyEquality instantiate universeEquality unionElimination hyp_replacement equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}as,bs:T  List.
          (l-ordered(T;x,y.R[x;y];as)
          {}\mRightarrow{}  l-ordered(T;x,y.R[x;y];bs)
          {}\mRightarrow{}  (as  =  bs  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:T.  ((x  \mmember{}  as)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  bs)))))  supposing 
          ((\mforall{}x,y:T.    (R[x;y]  {}\mRightarrow{}  (\mneg{}R[y;x])))  and 
          (\mforall{}x:T.  (\mneg{}R[x;x])))



Date html generated: 2020_05_20-AM-08_09_34
Last ObjectModification: 2020_01_17-AM-10_30_59

Theory : general


Home Index