Nuprl Lemma : no_repeats-before-equality
∀[T:Type]
  ∀as,bs:T List.
    (as = bs ∈ (T List)
       
⇐⇒ (∀x:T. ((x ∈ as) 
⇐⇒ (x ∈ bs))) ∧ (∀x,y:T.  (x before y ∈ as 
⇐⇒ x before y ∈ bs))) supposing 
       (no_repeats(T;bs) and 
       no_repeats(T;as))
Proof
Definitions occuring in Statement : 
l_before: x before y ∈ l
, 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
cand: A c∧ B
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
no_repeats_witness, 
and_wf, 
equal_wf, 
list_wf, 
l_member_wf, 
l_before_wf, 
all_wf, 
iff_wf, 
no_repeats_wf, 
list_induction, 
nil_wf, 
equal-wf-base-T, 
cons_wf, 
cons_member, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
nil_member, 
no_repeats_cons, 
cons_before, 
or_wf, 
l_before_member, 
l_before_member2, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
rename, 
because_Cache, 
independent_pairFormation, 
addLevel, 
hyp_replacement, 
equalitySymmetry, 
sqequalRule, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
productElimination, 
levelHypothesis, 
cumulativity, 
productEquality, 
lambdaEquality, 
functionEquality, 
baseClosed, 
dependent_functionElimination, 
inlFormation, 
independent_isectElimination, 
equalityTransitivity, 
voidElimination, 
impliesFunctionality, 
allFunctionality, 
allLevelFunctionality, 
andLevelFunctionality, 
impliesLevelFunctionality, 
promote_hyp, 
inrFormation, 
unionElimination, 
applyEquality, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality
Latex:
\mforall{}[T:Type]
    \mforall{}as,bs:T  List.
        (as  =  bs
              \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x:T.  ((x  \mmember{}  as)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  bs)))
                      \mwedge{}  (\mforall{}x,y:T.    (x  before  y  \mmember{}  as  \mLeftarrow{}{}\mRightarrow{}  x  before  y  \mmember{}  bs)))  supposing 
              (no\_repeats(T;bs)  and 
              no\_repeats(T;as))
Date html generated:
2018_05_21-PM-07_39_27
Last ObjectModification:
2017_07_26-PM-05_13_44
Theory : general
Home
Index