Nuprl Lemma : llex-le-order

[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].
  ((∀a:A. (¬<[a;a]))  Trans(A;a,b.<[a;b])  Order(A List;as,bs.as llex-le(A;a,b.<[a;b]) bs))


Proof




Definitions occuring in Statement :  llex-le: llex-le(A;a,b.<[a; b]) list: List order: Order(T;x,y.R[x; y]) trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q order: Order(T;x,y.R[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] llex-le: llex-le(A;a,b.<[a; b]) infix_ap: y guard: {T} or: P ∨ Q trans: Trans(T;x,y.E[x; y]) true: True squash: T subtype_rel: A ⊆B uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q anti_sym: AntiSym(T;x,y.R[x; y]) not: ¬A false: False
Lemmas referenced :  list_wf trans_wf all_wf not_wf llex_wf or_wf equal_wf llex_transitivity squash_wf true_wf iff_weakening_equal llex-le_wf llex-irreflexive
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality functionExtensionality functionEquality universeEquality inrFormation unionElimination independent_functionElimination dependent_functionElimination inlFormation rename because_Cache equalityUniverse levelHypothesis natural_numberEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed independent_isectElimination productElimination voidElimination

Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a:A.  (\mneg{}<[a;a]))  {}\mRightarrow{}  Trans(A;a,b.<[a;b])  {}\mRightarrow{}  Order(A  List;as,bs.as  llex-le(A;a,b.<[a;b])  bs))



Date html generated: 2017_02_20-AM-10_55_44
Last ObjectModification: 2017_02_02-PM-09_39_29

Theory : general


Home Index