Nuprl Lemma : llex-le-order
∀[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].
  ((∀a:A. (¬<[a;a])) 
⇒ Trans(A;a,b.<[a;b]) 
⇒ Order(A List;as,bs.as llex-le(A;a,b.<[a;b]) bs))
Proof
Definitions occuring in Statement : 
llex-le: llex-le(A;a,b.<[a; b])
, 
list: T List
, 
order: Order(T;x,y.R[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
order: Order(T;x,y.R[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
llex-le: llex-le(A;a,b.<[a; b])
, 
infix_ap: x f y
, 
guard: {T}
, 
or: P ∨ Q
, 
trans: Trans(T;x,y.E[x; y])
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
anti_sym: AntiSym(T;x,y.R[x; y])
, 
not: ¬A
, 
false: False
Lemmas referenced : 
list_wf, 
trans_wf, 
all_wf, 
not_wf, 
llex_wf, 
or_wf, 
equal_wf, 
llex_transitivity, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
llex-le_wf, 
llex-irreflexive
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
functionEquality, 
universeEquality, 
inrFormation, 
unionElimination, 
independent_functionElimination, 
dependent_functionElimination, 
inlFormation, 
rename, 
because_Cache, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
voidElimination
Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a:A.  (\mneg{}<[a;a]))  {}\mRightarrow{}  Trans(A;a,b.<[a;b])  {}\mRightarrow{}  Order(A  List;as,bs.as  llex-le(A;a,b.<[a;b])  bs))
Date html generated:
2017_02_20-AM-10_55_44
Last ObjectModification:
2017_02_02-PM-09_39_29
Theory : general
Home
Index