Nuprl Lemma : llex_transitivity
∀[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].
  (Trans(A;a,b.<[a;b])
  
⇒ (∀as,bs,cs:A List.  ((as llex(A;a,b.<[a;b]) bs) 
⇒ (bs llex(A;a,b.<[a;b]) cs) 
⇒ (as llex(A;a,b.<[a;b]) cs))))
Proof
Definitions occuring in Statement : 
llex: llex(A;a,b.<[a; b])
, 
list: T List
, 
trans: Trans(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
llex: llex(A;a,b.<[a; b])
, 
infix_ap: x f y
, 
or: P ∨ Q
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
decidable: Dec(P)
, 
less_than: a < b
, 
squash: ↓T
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
ge: i ≥ j 
, 
label: ...$L... t
, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
llex_wf, 
subtype_rel_self, 
list_wf, 
trans_wf, 
istype-universe, 
decidable__lt, 
length_wf, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
equal_wf, 
squash_wf, 
true_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
iff_weakening_equal, 
istype-le, 
istype-less_than, 
int_seg_wf, 
istype-nat, 
nat_properties, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
le_wf, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
sqequalRule, 
unionElimination, 
thin, 
universeIsType, 
cut, 
applyEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
lambdaEquality_alt, 
inhabitedIsType, 
hypothesis, 
instantiate, 
universeEquality, 
because_Cache, 
functionIsType, 
inlFormation_alt, 
productElimination, 
dependent_functionElimination, 
imageElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
dependent_set_memberEquality_alt, 
productIsType, 
equalityIstype, 
inrFormation_alt, 
functionEquality, 
cumulativity, 
hyp_replacement, 
productEquality
Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    (Trans(A;a,b.<[a;b])
    {}\mRightarrow{}  (\mforall{}as,bs,cs:A  List.
                ((as  llex(A;a,b.<[a;b])  bs)  {}\mRightarrow{}  (bs  llex(A;a,b.<[a;b])  cs)  {}\mRightarrow{}  (as  llex(A;a,b.<[a;b])  cs))))
Date html generated:
2020_05_20-AM-08_07_38
Last ObjectModification:
2019_12_31-PM-06_54_48
Theory : general
Home
Index