Nuprl Lemma : llex_transitivity

[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].
  (Trans(A;a,b.<[a;b])
   (∀as,bs,cs:A List.  ((as llex(A;a,b.<[a;b]) bs)  (bs llex(A;a,b.<[a;b]) cs)  (as llex(A;a,b.<[a;b]) cs))))


Proof




Definitions occuring in Statement :  llex: llex(A;a,b.<[a; b]) list: List trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] llex: llex(A;a,b.<[a; b]) infix_ap: y or: P ∨ Q member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B prop: and: P ∧ Q cand: c∧ B decidable: Dec(P) less_than: a < b squash: T uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q nat: ge: i ≥  label: ...$L... t trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  llex_wf subtype_rel_self list_wf trans_wf istype-universe decidable__lt length_wf full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf equal_wf squash_wf true_wf select_wf int_seg_properties decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma iff_weakening_equal istype-le istype-less_than int_seg_wf istype-nat nat_properties decidable__equal_int intformeq_wf int_formula_prop_eq_lemma le_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution sqequalRule unionElimination thin universeIsType cut applyEquality introduction extract_by_obid isectElimination hypothesisEquality lambdaEquality_alt inhabitedIsType hypothesis instantiate universeEquality because_Cache functionIsType inlFormation_alt productElimination dependent_functionElimination imageElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination equalityTransitivity equalitySymmetry setElimination rename imageMemberEquality baseClosed dependent_set_memberEquality_alt productIsType equalityIstype inrFormation_alt functionEquality cumulativity hyp_replacement productEquality

Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    (Trans(A;a,b.<[a;b])
    {}\mRightarrow{}  (\mforall{}as,bs,cs:A  List.
                ((as  llex(A;a,b.<[a;b])  bs)  {}\mRightarrow{}  (bs  llex(A;a,b.<[a;b])  cs)  {}\mRightarrow{}  (as  llex(A;a,b.<[a;b])  cs))))



Date html generated: 2020_05_20-AM-08_07_38
Last ObjectModification: 2019_12_31-PM-06_54_48

Theory : general


Home Index