Nuprl Lemma : llex-irreflexive

[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].  ((∀a:A. (¬<[a;a]))  (∀[L:A List]. (L llex(A;a,b.<[a;b]) L))))


Proof




Definitions occuring in Statement :  llex: llex(A;a,b.<[a; b]) list: List uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  llex: llex(A;a,b.<[a; b]) infix_ap: y uall: [x:A]. B[x] member: t ∈ T implies:  Q not: ¬A false: False or: P ∨ Q and: P ∧ Q less_than: a < b squash: T uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top prop: so_lambda: λ2x.t[x] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k so_apply: x[s] nat: ge: i ≥  decidable: Dec(P) so_apply: x[s1;s2] subtype_rel: A ⊆B
Lemmas referenced :  not_wf list_wf decidable__lt int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf intformle_wf intformnot_wf intformand_wf decidable__le nat_properties nat_wf exists_wf int_seg_properties select_wf member_wf int_seg_wf all_wf length_wf less_than_wf or_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_less_lemma itermVar_wf intformless_wf satisfiable-full-omega-tt
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution unionElimination productElimination imageElimination hypothesis lemma_by_obid isectElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality hypothesisEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality computeAll because_Cache independent_functionElimination productEquality cumulativity setElimination rename independent_pairFormation applyEquality universeEquality functionEquality

Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}a:A.  (\mneg{}<[a;a]))  {}\mRightarrow{}  (\mforall{}[L:A  List].  (\mneg{}(L  llex(A;a,b.<[a;b])  L))))



Date html generated: 2016_05_15-PM-04_18_01
Last ObjectModification: 2016_01_16-AM-11_08_52

Theory : general


Home Index