Nuprl Lemma : map_wf_combination

[A,B:Type]. ∀[f:A ⟶ B].  ∀[n:ℤ]. ∀[L:Combination(n;A)].  (map(f;L) ∈ Combination(n;B)) supposing Inj(A;B;f)


Proof




Definitions occuring in Statement :  combination: Combination(n;T) map: map(f;as) inject: Inj(A;B;f) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  combination: Combination(n;T) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: so_lambda: λ2x.t[x] and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s] cand: c∧ B all: x:A. B[x] top: Top inject: Inj(A;B;f) implies:  Q squash: T
Lemmas referenced :  set_wf list_wf no_repeats_wf equal-wf-T-base length_wf int_subtype_base inject_wf map_wf no_repeats_map subtype_rel_dep_function l_member_wf map-length member_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin cumulativity hypothesisEquality lambdaEquality productEquality intEquality applyEquality isect_memberEquality because_Cache functionExtensionality functionEquality universeEquality setElimination rename dependent_set_memberEquality productElimination independent_isectElimination setEquality lambdaFormation independent_pairFormation voidElimination voidEquality dependent_functionElimination independent_functionElimination hyp_replacement applyLambdaEquality imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].
    \mforall{}[n:\mBbbZ{}].  \mforall{}[L:Combination(n;A)].    (map(f;L)  \mmember{}  Combination(n;B))  supposing  Inj(A;B;f)



Date html generated: 2018_05_21-PM-08_07_59
Last ObjectModification: 2017_07_26-PM-05_43_44

Theory : general


Home Index