Nuprl Lemma : map_wf_combination
∀[A,B:Type]. ∀[f:A ⟶ B].  ∀[n:ℤ]. ∀[L:Combination(n;A)].  (map(f;L) ∈ Combination(n;B)) supposing Inj(A;B;f)
Proof
Definitions occuring in Statement : 
combination: Combination(n;T)
, 
map: map(f;as)
, 
inject: Inj(A;B;f)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
combination: Combination(n;T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
top: Top
, 
inject: Inj(A;B;f)
, 
implies: P 
⇒ Q
, 
squash: ↓T
Lemmas referenced : 
set_wf, 
list_wf, 
no_repeats_wf, 
equal-wf-T-base, 
length_wf, 
int_subtype_base, 
inject_wf, 
map_wf, 
no_repeats_map, 
subtype_rel_dep_function, 
l_member_wf, 
map-length, 
member_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
productEquality, 
intEquality, 
applyEquality, 
isect_memberEquality, 
because_Cache, 
functionExtensionality, 
functionEquality, 
universeEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
independent_isectElimination, 
setEquality, 
lambdaFormation, 
independent_pairFormation, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].
    \mforall{}[n:\mBbbZ{}].  \mforall{}[L:Combination(n;A)].    (map(f;L)  \mmember{}  Combination(n;B))  supposing  Inj(A;B;f)
Date html generated:
2018_05_21-PM-08_07_59
Last ObjectModification:
2017_07_26-PM-05_43_44
Theory : general
Home
Index