Nuprl Lemma : rem_mul2

[x,y:ℕ]. ∀[m:ℕ+].  ((x rem m) ((x rem m) rem m) ∈ ℤ)


Proof




Definitions occuring in Statement :  nat_plus: + nat: uall: [x:A]. B[x] remainder: rem m multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nequal: a ≠ b ∈  nat_plus: + nat: ge: i ≥  not: ¬A implies:  Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  rem_rem_to_rem iff_weakening_equal rem_mul int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_properties nat_plus_properties remainder_wf nat_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache intEquality remainderEquality multiplyEquality setElimination rename lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll equalityEquality equalityTransitivity equalitySymmetry productElimination independent_functionElimination

Latex:
\mforall{}[x,y:\mBbbN{}].  \mforall{}[m:\mBbbN{}\msupplus{}].    ((x  *  y  rem  m)  =  ((x  rem  m)  *  y  rem  m))



Date html generated: 2016_05_15-PM-04_48_36
Last ObjectModification: 2016_01_16-AM-11_25_41

Theory : general


Home Index