Nuprl Lemma : rem_mul

[x,y:ℕ]. ∀[m:ℕ+].  ((x rem m) ((x rem m) (y rem m) rem m) ∈ ℤ)


Proof




Definitions occuring in Statement :  nat_plus: + nat: uall: [x:A]. B[x] remainder: rem m multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: subtype_rel: A ⊆B nat_plus: + int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: all: x:A. B[x] implies:  Q nequal: a ≠ b ∈  not: ¬A false: False guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q)
Lemmas referenced :  false_wf int_term_value_mul_lemma int_term_value_add_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermMultiply_wf itermAdd_wf intformle_wf intformnot_wf multiply-is-int-iff add-is-int-iff decidable__le nat_plus_subtype_nat divide_wf multiply_nat_wf add_nat_wf le_wf remainder_wf mul_bounds_1a rem_invariant add-commutes add-swap mul-commutes mul-swap add-associates mul-associates mul-distributes-right mul-distributes nat_wf nat_plus_wf iff_weakening_equal equal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_properties nat_plus_properties nequal_wf less_than_wf subtype_rel_sets div_rem_sum
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality applyEquality sqequalRule because_Cache lambdaEquality natural_numberEquality hypothesis intEquality independent_isectElimination setEquality lambdaFormation dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination equalityEquality remainderEquality multiplyEquality equalityTransitivity equalitySymmetry productElimination axiomEquality divideEquality dependent_set_memberEquality addEquality unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed

Latex:
\mforall{}[x,y:\mBbbN{}].  \mforall{}[m:\mBbbN{}\msupplus{}].    ((x  *  y  rem  m)  =  ((x  rem  m)  *  (y  rem  m)  rem  m))



Date html generated: 2016_05_15-PM-04_48_28
Last ObjectModification: 2016_01_16-AM-11_26_42

Theory : general


Home Index