Nuprl Lemma : star-append_wf

[T:Type]. ∀[P,Q:(T List) ⟶ ℙ].  (star-append(T;P;Q) ∈ (T List) ⟶ ℙ)


Proof




Definitions occuring in Statement :  star-append: star-append(T;P;Q) list: List uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  star-append: star-append(T;P;Q) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: and: P ∧ Q all: x:A. B[x] so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  exists_wf list_wf l_all_wf2 l_member_wf equal_wf append_wf concat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis because_Cache productEquality lambdaFormation setElimination rename applyEquality functionExtensionality setEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality universeEquality isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P,Q:(T  List)  {}\mrightarrow{}  \mBbbP{}].    (star-append(T;P;Q)  \mmember{}  (T  List)  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2018_05_21-PM-07_33_40
Last ObjectModification: 2017_07_26-PM-05_08_32

Theory : general


Home Index