Nuprl Lemma : star-append_wf
∀[T:Type]. ∀[P,Q:(T List) ⟶ ℙ].  (star-append(T;P;Q) ∈ (T List) ⟶ ℙ)
Proof
Definitions occuring in Statement : 
star-append: star-append(T;P;Q)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
star-append: star-append(T;P;Q)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
exists_wf, 
list_wf, 
l_all_wf2, 
l_member_wf, 
equal_wf, 
append_wf, 
concat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
productEquality, 
lambdaFormation, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
setEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
isect_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P,Q:(T  List)  {}\mrightarrow{}  \mBbbP{}].    (star-append(T;P;Q)  \mmember{}  (T  List)  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2018_05_21-PM-07_33_40
Last ObjectModification:
2017_07_26-PM-05_08_32
Theory : general
Home
Index