Nuprl Lemma : trivial-int-eq-test

P:ℤ ⟶ ℙ
  ∀[x,y:ℤ].
    (((P ((x y) y))  (P x))
    ∧ ((P (y (x y)))  (P x))
    ∧ ((P ((x y) y))  (P x))
    ∧ ((P (y x))  (P x)))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] subtract: m add: m int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B implies:  Q member: t ∈ T prop: subtract: m top: Top
Lemmas referenced :  subtract-add-cancel subtract_wf minus-one-mul add-swap add-mul-special zero-mul add-zero and_wf equal_wf add-subtract-cancel minus-add minus-minus add-associates add-commutes
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut sqequalHypSubstitution sqequalRule introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis applyEquality functionExtensionality intEquality addEquality independent_pairFormation because_Cache isect_memberEquality voidElimination voidEquality dependent_set_memberEquality equalityTransitivity equalitySymmetry lambdaEquality setElimination rename productElimination setEquality hyp_replacement Error :applyLambdaEquality,  multiplyEquality natural_numberEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}P:\mBbbZ{}  {}\mrightarrow{}  \mBbbP{}
    \mforall{}[x,y:\mBbbZ{}].
        (((P  ((x  -  y)  +  y))  {}\mRightarrow{}  (P  x))
        \mwedge{}  ((P  (y  +  (x  -  y)))  {}\mRightarrow{}  (P  x))
        \mwedge{}  ((P  ((x  +  y)  -  y))  {}\mRightarrow{}  (P  x))
        \mwedge{}  ((P  (y  -  y  -  x))  {}\mRightarrow{}  (P  x)))



Date html generated: 2016_10_25-AM-10_43_58
Last ObjectModification: 2016_07_12-AM-06_54_19

Theory : general


Home Index