Nuprl Lemma : trivial-int-eq-test
∀P:ℤ ⟶ ℙ
  ∀[x,y:ℤ].
    (((P ((x - y) + y)) 
⇒ (P x))
    ∧ ((P (y + (x - y))) 
⇒ (P x))
    ∧ ((P ((x + y) - y)) 
⇒ (P x))
    ∧ ((P (y - y - x)) 
⇒ (P x)))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
subtract: n - m
, 
top: Top
Lemmas referenced : 
subtract-add-cancel, 
subtract_wf, 
minus-one-mul, 
add-swap, 
add-mul-special, 
zero-mul, 
add-zero, 
and_wf, 
equal_wf, 
add-subtract-cancel, 
minus-add, 
minus-minus, 
add-associates, 
add-commutes
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
functionExtensionality, 
intEquality, 
addEquality, 
independent_pairFormation, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
setElimination, 
rename, 
productElimination, 
setEquality, 
hyp_replacement, 
Error :applyLambdaEquality, 
multiplyEquality, 
natural_numberEquality, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}P:\mBbbZ{}  {}\mrightarrow{}  \mBbbP{}
    \mforall{}[x,y:\mBbbZ{}].
        (((P  ((x  -  y)  +  y))  {}\mRightarrow{}  (P  x))
        \mwedge{}  ((P  (y  +  (x  -  y)))  {}\mRightarrow{}  (P  x))
        \mwedge{}  ((P  ((x  +  y)  -  y))  {}\mRightarrow{}  (P  x))
        \mwedge{}  ((P  (y  -  y  -  x))  {}\mRightarrow{}  (P  x)))
Date html generated:
2016_10_25-AM-10_43_58
Last ObjectModification:
2016_07_12-AM-06_54_19
Theory : general
Home
Index