Nuprl Lemma : ts-refinement-composition

ts1,ts2,ts3:transition-system{i:l}. ∀g:ts-type(ts3) ⟶ ts-type(ts2). ∀f:ts-type(ts2) ⟶ ts-type(ts1).
  (ts-refinement(ts1;ts2;f)  ts-refinement(ts2;ts3;g)  ts-refinement(ts1;ts3;f g))


Proof




Definitions occuring in Statement :  ts-refinement: ts-refinement(ts1;ts2;f) ts-type: ts-type(ts) transition-system: transition-system{i:l} compose: g all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q ts-refinement: ts-refinement(ts1;ts2;f) ts-reachable: ts-reachable(ts) and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T prop: guard: {T} compose: g cand: c∧ B infix_ap: y subtype_rel: A ⊆B exists: x:A. B[x] squash: T true: True uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  rel-preserving-star-reachable ts-type_wf ts-init_wf ts-rel_wf ts-reachable_wf subtype_rel_wf ts-final_wf ts-refinement_wf transition-system_wf rel_star_transitivity ts-init_wf_reachable rel_star_wf rel_rel_star equal_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut independent_pairFormation introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis dependent_functionElimination independent_functionElimination productElimination because_Cache sqequalRule applyEquality setElimination rename lambdaEquality setEquality universeEquality cumulativity functionExtensionality functionEquality dependent_set_memberEquality equalityTransitivity equalitySymmetry dependent_pairFormation imageElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productEquality

Latex:
\mforall{}ts1,ts2,ts3:transition-system\{i:l\}.  \mforall{}g:ts-type(ts3)  {}\mrightarrow{}  ts-type(ts2).
\mforall{}f:ts-type(ts2)  {}\mrightarrow{}  ts-type(ts1).
    (ts-refinement(ts1;ts2;f)  {}\mRightarrow{}  ts-refinement(ts2;ts3;g)  {}\mRightarrow{}  ts-refinement(ts1;ts3;f  o  g))



Date html generated: 2018_05_21-PM-08_01_10
Last ObjectModification: 2017_07_26-PM-05_38_00

Theory : general


Home Index