Nuprl Lemma : typed-null-ite

[x,y:Top List]. ∀[b:𝔹].  null(if then else fi if then null(x) else null(y) fi 


Proof




Definitions occuring in Statement :  null: null(as) list: List ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] top: Top equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False
Lemmas referenced :  bool_wf eqtt_to_assert null_wf top_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality thin extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination isectElimination because_Cache productElimination independent_isectElimination sqequalRule dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination voidElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[x,y:Top  List].  \mforall{}[b:\mBbbB{}].    null(if  b  then  x  else  y  fi  )  =  if  b  then  null(x)  else  null(y)  fi 



Date html generated: 2018_05_21-PM-06_36_50
Last ObjectModification: 2017_07_26-PM-04_52_52

Theory : general


Home Index