Nuprl Lemma : compose-dma-hom

[dma1,dma2,dma3:DeMorganAlgebra]. ∀[f:dma-hom(dma1;dma2)]. ∀[g:dma-hom(dma2;dma3)].  (g f ∈ dma-hom(dma1;dma3))


Proof




Definitions occuring in Statement :  dma-hom: dma-hom(dma1;dma2) DeMorgan-algebra: DeMorganAlgebra compose: g uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dma-hom: dma-hom(dma1;dma2) compose: g squash: T prop: bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) DeMorgan-algebra: DeMorganAlgebra true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  equal_wf squash_wf true_wf dma-neg_wf iff_weakening_equal uall_wf dma-hom_wf DeMorgan-algebra_wf compose-bounded-lattice-hom bdd-distributive-lattice-subtype-bdd-lattice DeMorgan-algebra-subtype subtype_rel_transitivity bdd-distributive-lattice_wf bdd-lattice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality sqequalRule applyEquality lambdaEquality imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination axiomEquality dependent_functionElimination isect_memberEquality instantiate

Latex:
\mforall{}[dma1,dma2,dma3:DeMorganAlgebra].  \mforall{}[f:dma-hom(dma1;dma2)].  \mforall{}[g:dma-hom(dma2;dma3)].
    (g  o  f  \mmember{}  dma-hom(dma1;dma3))



Date html generated: 2020_05_20-AM-08_56_12
Last ObjectModification: 2017_07_28-AM-09_17_17

Theory : lattices


Home Index