Nuprl Lemma : dlattice-order-iff
∀[X:Type]. ∀as,bs:X List List.  (as 
⇒ bs 
⇐⇒ ∀x:X List. ((x ∈ bs) 
⇒ (∃y:X List. ((y ∈ as) ∧ l_subset(X;y;x)))))
Proof
Definitions occuring in Statement : 
dlattice-order: as 
⇒ bs
, 
l_subset: l_subset(T;as;bs)
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
dlattice-order: as 
⇒ bs
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
Lemmas referenced : 
l_member_wf, 
list_wf, 
dlattice-order_wf, 
all_wf, 
exists_wf, 
l_subset_wf, 
l_all_iff, 
l_exists_wf, 
l_contains_wf, 
l_exists_iff, 
l_subset-l_contains
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
productEquality, 
universeEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
setEquality, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation, 
addLevel, 
allFunctionality, 
impliesFunctionality, 
levelHypothesis, 
allLevelFunctionality, 
impliesLevelFunctionality
Latex:
\mforall{}[X:Type]
    \mforall{}as,bs:X  List  List.
        (as  {}\mRightarrow{}  bs  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:X  List.  ((x  \mmember{}  bs)  {}\mRightarrow{}  (\mexists{}y:X  List.  ((y  \mmember{}  as)  \mwedge{}  l\_subset(X;y;x)))))
Date html generated:
2020_05_20-AM-08_26_30
Last ObjectModification:
2017_07_28-AM-09_13_17
Theory : lattices
Home
Index