Nuprl Lemma : dlattice-order-iff

[X:Type]. ∀as,bs:X List List.  (as  bs ⇐⇒ ∀x:X List. ((x ∈ bs)  (∃y:X List. ((y ∈ as) ∧ l_subset(X;y;x)))))


Proof




Definitions occuring in Statement :  dlattice-order: as  bs l_subset: l_subset(T;as;bs) l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] dlattice-order: as  bs exists: x:A. B[x] cand: c∧ B
Lemmas referenced :  l_member_wf list_wf dlattice-order_wf all_wf exists_wf l_subset_wf l_all_iff l_exists_wf l_contains_wf l_exists_iff l_subset-l_contains
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality functionEquality productEquality universeEquality dependent_functionElimination setElimination rename setEquality productElimination independent_functionElimination dependent_pairFormation addLevel allFunctionality impliesFunctionality levelHypothesis allLevelFunctionality impliesLevelFunctionality

Latex:
\mforall{}[X:Type]
    \mforall{}as,bs:X  List  List.
        (as  {}\mRightarrow{}  bs  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:X  List.  ((x  \mmember{}  bs)  {}\mRightarrow{}  (\mexists{}y:X  List.  ((y  \mmember{}  as)  \mwedge{}  l\_subset(X;y;x)))))



Date html generated: 2020_05_20-AM-08_26_30
Last ObjectModification: 2017_07_28-AM-09_13_17

Theory : lattices


Home Index