Nuprl Lemma : flattice-order_wf
∀[X:Type]. ∀[as,bs:(X + X) List List].  (flattice-order(X;as;bs) ∈ ℙ)
Proof
Definitions occuring in Statement : 
flattice-order: flattice-order(X;as;bs)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
flattice-order: flattice-order(X;as;bs)
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
l_all_wf2, 
list_wf, 
l_member_wf, 
or_wf, 
l_exists_wf, 
equal_wf, 
flip-union_wf, 
l_contains_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
setEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[as,bs:(X  +  X)  List  List].    (flattice-order(X;as;bs)  \mmember{}  \mBbbP{})
Date html generated:
2020_05_20-AM-08_59_15
Last ObjectModification:
2017_01_24-AM-10_47_56
Theory : lattices
Home
Index