Nuprl Lemma : free-dlwc-point-subtype

[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))].
  (Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])) ⊆Point(free-dist-lattice(T; eq)))


Proof




Definitions occuring in Statement :  free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) free-dist-lattice: free-dist-lattice(T; eq) lattice-point: Point(l) fset: fset(T) deq: EqDecider(T) subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  top: Top member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B and: P ∧ Q prop: all: x:A. B[x] implies:  Q cand: c∧ B
Lemmas referenced :  subtype_rel_sets fset_wf and_wf assert_wf fset-antichain_wf fset-all_wf fset-contains-none_wf deq_wf free-dlwc-point free-dl-point
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberEquality voidElimination voidEquality isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache sqequalRule lambdaEquality applyEquality independent_isectElimination setElimination rename setEquality lambdaFormation productElimination axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].
    (Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))  \msubseteq{}r  Point(free-dist-lattice(T;  eq)))



Date html generated: 2020_05_20-AM-08_48_24
Last ObjectModification: 2015_12_28-PM-01_59_00

Theory : lattices


Home Index