Nuprl Lemma : agree_on_common_weakening

[T:Type]. ∀as,bs:T List.  agree_on_common(T;as;bs) supposing as bs ∈ (T List)


Proof




Definitions occuring in Statement :  agree_on_common: agree_on_common(T;as;bs) list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q agree_on_common: agree_on_common(T;as;bs) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] true: True guard: {T} or: P ∨ Q and: P ∧ Q cand: c∧ B
Lemmas referenced :  length_wf_nat equal_wf nat_wf list_induction agree_on_common_wf list_wf list_ind_nil_lemma list_ind_cons_lemma not_wf l_member_wf cons_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation cut introduction axiomEquality hypothesis thin rename dependent_set_memberEquality extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality inrFormation independent_pairFormation productEquality because_Cache hyp_replacement equalitySymmetry applyLambdaEquality setElimination universeIsType universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}as,bs:T  List.    agree\_on\_common(T;as;bs)  supposing  as  =  bs



Date html generated: 2019_10_15-AM-10_53_02
Last ObjectModification: 2018_09_27-AM-11_04_15

Theory : list!


Home Index