Nuprl Lemma : causal_order_monotonic4
∀[T:Type]
  ∀L:T List
    ∀[P1,P2,Q:ℕ||L|| ⟶ ℙ]. ∀[R1,R2:ℕ||L|| ⟶ ℕ||L|| ⟶ ℙ].
      ((∀i:ℕ||L||. ((P1 i) 
⇒ (P2 i)))
      
⇒ (∀x,y:ℕ||L||.  ((R1 x y) 
⇒ (R2 x y)))
      
⇒ causal_order(L;R1;P1;Q)
      
⇒ causal_order(L;R2;P2;Q))
Proof
Definitions occuring in Statement : 
causal_order: causal_order(L;R;P;Q)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
causal_order: causal_order(L;R;P;Q)
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
Lemmas referenced : 
le_wf, 
subtype_rel_self, 
causal_order_wf, 
all_wf, 
int_seg_wf, 
length_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation, 
sqequalHypSubstitution, 
lambdaFormation_alt, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
dependent_pairFormation, 
independent_pairFormation, 
promote_hyp, 
productEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
applyEquality, 
because_Cache, 
sqequalRule, 
instantiate, 
universeEquality, 
universeIsType, 
natural_numberEquality, 
lambdaEquality, 
functionEquality, 
inhabitedIsType, 
functionIsType
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[P1,P2,Q:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R1,R2:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbN{}||L||  {}\mrightarrow{}  \mBbbP{}].
            ((\mforall{}i:\mBbbN{}||L||.  ((P1  i)  {}\mRightarrow{}  (P2  i)))
            {}\mRightarrow{}  (\mforall{}x,y:\mBbbN{}||L||.    ((R1  x  y)  {}\mRightarrow{}  (R2  x  y)))
            {}\mRightarrow{}  causal\_order(L;R1;P1;Q)
            {}\mRightarrow{}  causal\_order(L;R2;P2;Q))
Date html generated:
2019_10_15-AM-10_57_52
Last ObjectModification:
2018_09_27-AM-09_50_16
Theory : list!
Home
Index