Nuprl Lemma : causal_order_wf
∀[T:Type]. ∀[L:T List]. ∀[P,Q:ℕ||L|| ⟶ ℙ]. ∀[R:ℕ||L|| ⟶ ℕ||L|| ⟶ ℙ].  (causal_order(L;R;P;Q) ∈ ℙ)
Proof
Definitions occuring in Statement : 
causal_order: causal_order(L;R;P;Q)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
causal_order: causal_order(L;R;P;Q)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
int_seg_wf, 
length_wf, 
exists_wf, 
le_wf, 
subtype_rel_self, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
applyEquality, 
productEquality, 
setElimination, 
rename, 
instantiate, 
universeEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeIsType, 
inhabitedIsType, 
isect_memberEquality, 
cumulativity
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P,Q:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbN{}||L||  {}\mrightarrow{}  \mBbbP{}].    (causal\_order(L;R;P;Q)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_15-AM-10_57_31
Last ObjectModification:
2018_09_27-AM-09_37_30
Theory : list!
Home
Index