Nuprl Lemma : l_succ_wf

[T:Type]. ∀[l:T List]. ∀[x:T]. ∀[P:T ⟶ ℙ].  (y succ(x) in l P[y] ∈ ℙ)


Proof




Definitions occuring in Statement :  l_succ: l_succ list: List uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T l_succ: l_succ so_lambda: λ2x.t[x] implies:  Q prop: nat: uimplies: supposing a ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q less_than: a < b squash: T so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  all_wf nat_wf less_than_wf length_wf equal_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality functionEquality addEquality setElimination rename because_Cache natural_numberEquality cumulativity hypothesisEquality independent_isectElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination productElimination applyEquality functionExtensionality universeEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].  \mforall{}[x:T].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    (y  =  succ(x)  in  l{}\mRightarrow{}  P[y]  \mmember{}  \mBbbP{})



Date html generated: 2017_10_01-AM-08_33_47
Last ObjectModification: 2017_07_26-PM-04_25_17

Theory : list!


Home Index