Nuprl Lemma : swap_select

[T:Type]. ∀[L:T List]. ∀[i,j,x:ℕ||L||].  (swap(L;i;j)[x] L[(i, j) x] ∈ T)


Proof




Definitions occuring in Statement :  swap: swap(L;i;j) flip: (i, j) select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] apply: a natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T swap: swap(L;i;j) nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q less_than: a < b squash: T le: A ≤ B all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop:
Lemmas referenced :  permute_list_select flip_wf int_seg_properties decidable__le length_wf full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality_alt setElimination rename productElimination imageElimination hypothesis dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination inhabitedIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[i,j,x:\mBbbN{}||L||].    (swap(L;i;j)[x]  =  L[(i,  j)  x])



Date html generated: 2020_05_20-AM-07_48_56
Last ObjectModification: 2019_12_26-PM-04_47_15

Theory : list!


Home Index