Nuprl Lemma : swap_select
∀[T:Type]. ∀[L:T List]. ∀[i,j,x:ℕ||L||]. (swap(L;i;j)[x] = L[(i, j) x] ∈ T)
Proof
Definitions occuring in Statement :
swap: swap(L;i;j)
,
flip: (i, j)
,
select: L[n]
,
length: ||as||
,
list: T List
,
int_seg: {i..j-}
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
natural_number: $n
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
swap: swap(L;i;j)
,
nat: ℕ
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
less_than: a < b
,
squash: ↓T
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
prop: ℙ
Lemmas referenced :
permute_list_select,
flip_wf,
int_seg_properties,
decidable__le,
length_wf,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
istype-int,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
istype-le,
int_seg_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
dependent_set_memberEquality_alt,
setElimination,
rename,
productElimination,
imageElimination,
hypothesis,
dependent_functionElimination,
natural_numberEquality,
unionElimination,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
lambdaEquality_alt,
int_eqEquality,
Error :memTop,
independent_pairFormation,
universeIsType,
voidElimination,
inhabitedIsType,
isect_memberEquality_alt,
axiomEquality,
isectIsTypeImplies,
because_Cache
Latex:
\mforall{}[T:Type]. \mforall{}[L:T List]. \mforall{}[i,j,x:\mBbbN{}||L||]. (swap(L;i;j)[x] = L[(i, j) x])
Date html generated:
2020_05_20-AM-07_48_56
Last ObjectModification:
2019_12_26-PM-04_47_15
Theory : list!
Home
Index