Nuprl Lemma : swap_select
∀[T:Type]. ∀[L:T List]. ∀[i,j,x:ℕ||L||].  (swap(L;i;j)[x] = L[(i, j) x] ∈ T)
Proof
Definitions occuring in Statement : 
swap: swap(L;i;j)
, 
flip: (i, j)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
swap: swap(L;i;j)
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
less_than: a < b
, 
squash: ↓T
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
permute_list_select, 
flip_wf, 
int_seg_properties, 
decidable__le, 
length_wf, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
productElimination, 
imageElimination, 
hypothesis, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
inhabitedIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
because_Cache
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[i,j,x:\mBbbN{}||L||].    (swap(L;i;j)[x]  =  L[(i,  j)  x])
Date html generated:
2020_05_20-AM-07_48_56
Last ObjectModification:
2019_12_26-PM-04_47_15
Theory : list!
Home
Index