Nuprl Lemma : Cramers-rule

[r:CRng]. ∀[n:ℕ]. ∀[A:Matrix(n;n;r)]. ∀[c:{c:|r|| (c |A|) 1 ∈ |r|} ]. ∀[b:Column(n;r)].
  ((A*c*matrix(|matrix(if y=j then b[x,0] else A[x,y])|)) b ∈ Column(n;r))


Proof




Definitions occuring in Statement :  matrix-scalar-mul: k*M matrix-det: |M| matrix-times: (M*N) mx: matrix(M[x; y]) matrix-ap: M[i,j] matrix: Matrix(n;m;r) nat: uall: [x:A]. B[x] infix_ap: y int_eq: if a=b then else d set: {x:A| B[x]}  natural_number: $n equal: t ∈ T crng: CRng rng_one: 1 rng_times: * rng_car: |r|
Definitions unfolded in proof :  true: True so_apply: x[s] infix_ap: y so_lambda: λ2x.t[x] rng: Rng crng: CRng uimplies: supposing a prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: member: t ∈ T uall: [x:A]. B[x] squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q
Lemmas referenced :  crng_wf nat_wf rng_one_wf matrix-det_wf rng_times_wf equal_wf rng_car_wf set_wf matrix_wf le_wf false_wf adj-solution-property squash_wf true_wf matrix-times_wf rng_wf adj-solution-column iff_weakening_equal
Rules used in proof :  applyEquality lambdaEquality because_Cache axiomEquality isect_memberEquality independent_isectElimination hypothesis lambdaFormation independent_pairFormation sqequalRule natural_numberEquality dependent_set_memberEquality hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid rename thin setElimination cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution imageElimination equalityTransitivity equalitySymmetry universeEquality intEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:Matrix(n;n;r)].  \mforall{}[c:\{c:|r||  (c  *  |A|)  =  1\}  ].  \mforall{}[b:Column(n;r)].
    ((A*c*matrix(|matrix(if  y=j  then  b[x,0]  else  A[x,y])|))  =  b)



Date html generated: 2018_05_21-PM-09_40_26
Last ObjectModification: 2017_12_14-PM-04_18_11

Theory : matrices


Home Index