Nuprl Lemma : adj-solution-property
∀[r:CRng]. ∀[n,m:ℕ]. ∀[A:Matrix(n;n;r)]. ∀[c:|r|]. ∀[b:Matrix(n;m;r)].
  (A*adj-solution(r;n;A;c;b)) = b ∈ Matrix(n;m;r) supposing (c * |A|) = 1 ∈ |r|
Proof
Definitions occuring in Statement : 
adj-solution: adj-solution(r;n;A;c;b)
, 
matrix-det: |M|
, 
matrix-times: (M*N)
, 
matrix: Matrix(n;m;r)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_one: 1
, 
rng_times: *
, 
rng_car: |r|
Definitions unfolded in proof : 
true: True
, 
nat: ℕ
, 
infix_ap: x f y
, 
rng: Rng
, 
crng: CRng
, 
prop: ℙ
, 
adj-solution: adj-solution(r;n;A;c;b)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
adjugate_wf, 
matrix-times_wf, 
crng_wf, 
nat_wf, 
matrix_wf, 
rng_one_wf, 
matrix-det_wf, 
rng_times_wf, 
rng_car_wf, 
equal_wf, 
squash_wf, 
true_wf, 
matrix-times-scalar-mul, 
matrix-scalar-mul_wf, 
rng_sig_wf, 
matrix-times-assoc, 
rng_wf, 
adjugate-property, 
iff_weakening_equal, 
matrix-scalar-mul-times, 
identity-matrix_wf, 
matrix-scalar-mul-mul, 
matrix-scalar-mul-1, 
matrix-times-id-left
Rules used in proof : 
natural_numberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
isect_memberEquality, 
sqequalRule, 
because_Cache, 
applyEquality, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
lambdaEquality, 
imageElimination, 
universeEquality, 
intEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[r:CRng].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[A:Matrix(n;n;r)].  \mforall{}[c:|r|].  \mforall{}[b:Matrix(n;m;r)].
    (A*adj-solution(r;n;A;c;b))  =  b  supposing  (c  *  |A|)  =  1
Date html generated:
2018_05_21-PM-09_40_16
Last ObjectModification:
2017_12_14-PM-03_37_21
Theory : matrices
Home
Index