Nuprl Lemma : adj-solution-column
∀[r:CRng]. ∀[n:ℕ]. ∀[A:Matrix(n;n;r)]. ∀[c:|r|]. ∀[b:Column(n;r)].
(adj-solution(r;n;A;c;b) = c*matrix(|matrix(if y=j then b[x,0] else A[x,y])|) ∈ Column(n;r))
Proof
Definitions occuring in Statement :
adj-solution: adj-solution(r;n;A;c;b)
,
matrix-scalar-mul: k*M
,
matrix-det: |M|
,
mx: matrix(M[x; y])
,
matrix-ap: M[i,j]
,
matrix: Matrix(n;m;r)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
int_eq: if a=b then c else d
,
natural_number: $n
,
equal: s = t ∈ T
,
crng: CRng
,
rng_car: |r|
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
adj-solution: adj-solution(r;n;A;c;b)
,
squash: ↓T
,
prop: ℙ
,
nat: ℕ
,
crng: CRng
,
rng: Rng
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
matrix-times: (M*N)
,
so_lambda: λ2x y.t[x; y]
,
adjugate: adj(M)
,
all: ∀x:A. B[x]
,
top: Top
,
so_apply: x[s1;s2]
,
so_lambda: λ2x.t[x]
,
int_seg: {i..j-}
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
ifthenelse: if b then t else f fi
,
guard: {T}
,
ge: i ≥ j
,
lelt: i ≤ j < k
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
bfalse: ff
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
less_than: a < b
,
true: True
,
nequal: a ≠ b ∈ T
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
matrix-minor: matrix-minor(i;j;m)
,
mx: matrix(M[x; y])
,
subtract: n - m
,
ringeq_int_terms: t1 ≡ t2
Lemmas referenced :
matrix-scalar-mul_wf,
squash_wf,
true_wf,
matrix_wf,
nat_wf,
rng_car_wf,
rng_sig_wf,
istype-false,
le_wf,
mx_wf,
int_seg_wf,
istype-int,
matrix_ap_mx_lemma,
istype-void,
expand-det-by-column,
equal_wf,
istype-universe,
rng_sum_wf,
isEven_wf,
eqtt_to_assert,
infix_ap_wf,
rng_times_wf,
matrix-det_wf,
subtract_wf,
int_seg_properties,
nat_properties,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermSubtract_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_subtract_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
matrix-minor_wf,
matrix-ap_wf,
eqff_to_assert,
set_subtype_base,
lelt_wf,
int_subtype_base,
bool_cases_sqequal,
subtype_base_sq,
bool_wf,
bool_subtype_base,
assert-bnot,
rng_minus_wf,
eq_int_wf,
assert_of_eq_int,
less_than_wf,
neg_assert_of_eq_int,
subtype_rel_self,
iff_weakening_equal,
rng_wf,
crng_wf,
add-commutes,
assert_elim,
not_assert_elim,
btrue_neq_bfalse,
lt_int_wf,
assert_of_lt_int,
istype-top,
decidable__lt,
iff_weakening_uiff,
assert_wf,
add-member-int_seg2,
intformeq_wf,
int_formula_prop_eq_lemma,
itermAdd_wf,
int_term_value_add_lemma,
decidable__equal_int,
crng_times_comm,
itermMultiply_wf,
itermMinus_wf,
ringeq-iff-rsub-is-0,
ring_polynomial_null,
int-to-ring_wf,
ring_term_value_add_lemma,
ring_term_value_mul_lemma,
ring_term_value_minus_lemma,
ring_term_value_var_lemma,
ring_term_value_const_lemma,
int-to-ring-zero
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
applyEquality,
thin,
lambdaEquality_alt,
sqequalHypSubstitution,
imageElimination,
extract_by_obid,
isectElimination,
hypothesisEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
universeIsType,
setElimination,
rename,
inhabitedIsType,
because_Cache,
dependent_set_memberEquality_alt,
natural_numberEquality,
sqequalRule,
independent_pairFormation,
lambdaFormation_alt,
functionIsType,
dependent_functionElimination,
isect_memberEquality_alt,
voidElimination,
universeEquality,
addEquality,
unionElimination,
equalityElimination,
productElimination,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
int_eqEquality,
equalityIsType2,
baseApply,
closedConclusion,
baseClosed,
intEquality,
promote_hyp,
instantiate,
cumulativity,
equalityIsType1,
int_eqReduceTrueSq,
imageMemberEquality,
productIsType,
int_eqReduceFalseSq,
axiomEquality,
hyp_replacement,
applyLambdaEquality,
equalityIsType4,
lessCases,
axiomSqEquality
Latex:
\mforall{}[r:CRng]. \mforall{}[n:\mBbbN{}]. \mforall{}[A:Matrix(n;n;r)]. \mforall{}[c:|r|]. \mforall{}[b:Column(n;r)].
(adj-solution(r;n;A;c;b) = c*matrix(|matrix(if y=j then b[x,0] else A[x,y])|))
Date html generated:
2019_10_16-AM-11_28_38
Last ObjectModification:
2018_10_11-PM-04_15_47
Theory : matrices
Home
Index