Nuprl Lemma : expand-det-by-column

[n:ℕ]. ∀[j:ℕn]. ∀[r:CRng]. ∀[M:Matrix(n;n;r)].
  (|M| (r) 0 ≤ i < n. if isEven(i j) then M[i,j] else -r M[i,j] fi  |matrix-minor(i;j;M)|) ∈ |r|)


Proof




Definitions occuring in Statement :  matrix-minor: matrix-minor(i;j;m) matrix-det: |M| matrix-ap: M[i,j] matrix: Matrix(n;m;r) isEven: isEven(n) int_seg: {i..j-} nat: ifthenelse: if then else fi  uall: [x:A]. B[x] infix_ap: y apply: a subtract: m add: m natural_number: $n equal: t ∈ T rng_sum: rng_sum crng: CRng rng_times: * rng_minus: -r rng_car: |r|
Definitions unfolded in proof :  so_apply: x[s] assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  lelt: i ≤ j < k ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 so_lambda: λ2x.t[x] matrix-times: (M*N) adjugate: adj(M) int_seg: {i..j-} so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] top: Top all: x:A. B[x] matrix-scalar-mul: k*M identity-matrix: I implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True rng: Rng crng: CRng nat: prop: squash: T member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_minus_wf nat_wf crng_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert rng_times_wf infix_ap_wf matrix-minor_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties subtract_wf crng_times_comm eqtt_to_assert bool_wf isEven_wf add-commutes rng_wf rng_sum_wf rng_times_one rng_car_wf matrix_ap_mx_lemma iff_weakening_equal identity-matrix_wf matrix-det_wf matrix-scalar-mul_wf adjugate-property2 equal_wf rng_sig_wf int_seg_wf matrix_wf true_wf squash_wf matrix-ap_wf rng_times_over_minus
Rules used in proof :  axiomEquality cumulativity instantiate promote_hyp independent_pairFormation int_eqEquality dependent_pairFormation approximateComputation dependent_set_memberEquality equalityElimination unionElimination lambdaFormation addEquality functionEquality int_eqReduceTrueSq voidEquality voidElimination isect_memberEquality dependent_functionElimination independent_functionElimination productElimination independent_isectElimination baseClosed imageMemberEquality sqequalRule universeEquality because_Cache rename setElimination intEquality natural_numberEquality equalitySymmetry hypothesis equalityTransitivity hypothesisEquality isectElimination extract_by_obid imageElimination sqequalHypSubstitution lambdaEquality thin applyEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[j:\mBbbN{}n].  \mforall{}[r:CRng].  \mforall{}[M:Matrix(n;n;r)].
    (|M|  =  (\mSigma{}(r)  0  \mleq{}  i  <  n.  if  isEven(i  +  j)  then  M[i,j]  else  -r  M[i,j]  fi    *  |matrix-minor(i;j;M)|))



Date html generated: 2018_05_21-PM-09_39_22
Last ObjectModification: 2017_12_14-PM-03_54_58

Theory : matrices


Home Index