Nuprl Lemma : FOLRule-induction

[P:FOLRule() ⟶ ℙ]
  (P[andI]
   P[impI]
   (∀var:ℤP[allI with var])
   (∀var:ℤP[existsI with var])
   (∀left:𝔹P[fRuleorI(left)])
   P[hyp]
   (∀hypnum:ℕP[andE on hypnum])
   (∀hypnum:ℕP[orE on hypnum])
   (∀hypnum:ℕP[impE on hypnum])
   (∀hypnum:ℕ. ∀var:ℤ.  P[allE on hypnum with var])
   (∀hypnum:ℕ. ∀var:ℤ.  P[existsE on hypnum with var])
   (∀hypnum:ℕP[falseE on hypnum])
   {∀v:FOLRule(). P[v]})


Proof




Definitions occuring in Statement :  fRulefalseE: falseE on hypnum fRuleexistsE: existsE on hypnum with var fRuleallE: allE on hypnum with var fRuleimpE: impE on hypnum fRuleorE: orE on hypnum fRuleandE: andE on hypnum fRulehyp: hyp fRuleorI: fRuleorI(left) fRuleexistsI: existsI with var fRuleallI: allI with var fRuleimpI: impI fRuleandI: andI FOLRule: FOLRule() nat: bool: 𝔹 uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q guard: {T} all: x:A. B[x] ext-eq: A ≡ B and: P ∧ Q member: t ∈ T subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a sq_type: SQType(T) eq_atom: =a y ifthenelse: if then else fi  fRuleandI: andI bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q bnot: ¬bb assert: b false: False fRuleimpI: impI fRuleallI: allI with var fRuleexistsI: existsI with var fRuleorI: fRuleorI(left) fRulehyp: hyp fRuleandE: andE on hypnum fRuleorE: orE on hypnum fRuleimpE: impE on hypnum fRuleallE: allE on hypnum with var fRuleexistsE: existsE on hypnum with var fRulefalseE: falseE on hypnum
Lemmas referenced :  FOLRule-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base unit_wf2 unit_subtype_base it_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom FOLRule_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid promote_hyp sqequalHypSubstitution productElimination thin hypothesis_subsumption hypothesis hypothesisEquality applyEquality sqequalRule isectElimination tokenEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination instantiate cumulativity atomEquality dependent_functionElimination independent_functionElimination because_Cache dependent_pairFormation voidElimination

Latex:
\mforall{}[P:FOLRule()  {}\mrightarrow{}  \mBbbP{}]
    (P[andI]
    {}\mRightarrow{}  P[impI]
    {}\mRightarrow{}  (\mforall{}var:\mBbbZ{}.  P[allI  with  var])
    {}\mRightarrow{}  (\mforall{}var:\mBbbZ{}.  P[existsI  with  var])
    {}\mRightarrow{}  (\mforall{}left:\mBbbB{}.  P[fRuleorI(left)])
    {}\mRightarrow{}  P[hyp]
    {}\mRightarrow{}  (\mforall{}hypnum:\mBbbN{}.  P[andE  on  hypnum])
    {}\mRightarrow{}  (\mforall{}hypnum:\mBbbN{}.  P[orE  on  hypnum])
    {}\mRightarrow{}  (\mforall{}hypnum:\mBbbN{}.  P[impE  on  hypnum])
    {}\mRightarrow{}  (\mforall{}hypnum:\mBbbN{}.  \mforall{}var:\mBbbZ{}.    P[allE  on  hypnum  with  var])
    {}\mRightarrow{}  (\mforall{}hypnum:\mBbbN{}.  \mforall{}var:\mBbbZ{}.    P[existsE  on  hypnum  with  var])
    {}\mRightarrow{}  (\mforall{}hypnum:\mBbbN{}.  P[falseE  on  hypnum])
    {}\mRightarrow{}  \{\mforall{}v:FOLRule().  P[v]\})



Date html generated: 2018_05_21-PM-10_29_12
Last ObjectModification: 2017_07_26-PM-06_41_24

Theory : minimal-first-order-logic


Home Index