Nuprl Lemma : mFOLRule-induction

[P:mFOLRule() ⟶ ℙ]
  (P[andI]
   P[impI]
   (∀var:ℤP[allI with var])
   (∀var:ℤP[existsI with var])
   (∀left:𝔹P[mRuleorI(left)])
   P[hyp]
   (∀hypnum:ℕP[andE on hypnum])
   (∀hypnum:ℕP[orE on hypnum])
   (∀hypnum:ℕP[impE on hypnum])
   (∀hypnum:ℕ. ∀var:ℤ.  P[allE on hypnum with var])
   (∀hypnum:ℕ. ∀var:ℤ.  P[existsE on hypnum with var])
   {∀v:mFOLRule(). P[v]})


Proof




Definitions occuring in Statement :  mRuleexistsE: existsE on hypnum with var mRuleallE: allE on hypnum with var mRuleimpE: impE on hypnum mRuleorE: orE on hypnum mRuleandE: andE on hypnum mRulehyp: hyp mRuleorI: mRuleorI(left) mRuleexistsI: existsI with var mRuleallI: allI with var mRuleimpI: impI mRuleandI: andI mFOLRule: mFOLRule() nat: bool: 𝔹 uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q guard: {T} all: x:A. B[x] ext-eq: A ≡ B and: P ∧ Q member: t ∈ T subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a sq_type: SQType(T) eq_atom: =a y ifthenelse: if then else fi  mRuleandI: andI bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q bnot: ¬bb assert: b false: False mRuleimpI: impI mRuleallI: allI with var mRuleexistsI: existsI with var mRuleorI: mRuleorI(left) mRulehyp: hyp mRuleandE: andE on hypnum mRuleorE: orE on hypnum mRuleimpE: impE on hypnum mRuleallE: allE on hypnum with var mRuleexistsE: existsE on hypnum with var
Lemmas referenced :  mFOLRule-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base unit_wf2 unit_subtype_base it_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom mFOLRule_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid promote_hyp sqequalHypSubstitution productElimination thin hypothesis_subsumption hypothesis hypothesisEquality applyEquality sqequalRule isectElimination tokenEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination instantiate cumulativity atomEquality dependent_functionElimination independent_functionElimination because_Cache dependent_pairFormation voidElimination

Latex:
\mforall{}[P:mFOLRule()  {}\mrightarrow{}  \mBbbP{}]
    (P[andI]
    {}\mRightarrow{}  P[impI]
    {}\mRightarrow{}  (\mforall{}var:\mBbbZ{}.  P[allI  with  var])
    {}\mRightarrow{}  (\mforall{}var:\mBbbZ{}.  P[existsI  with  var])
    {}\mRightarrow{}  (\mforall{}left:\mBbbB{}.  P[mRuleorI(left)])
    {}\mRightarrow{}  P[hyp]
    {}\mRightarrow{}  (\mforall{}hypnum:\mBbbN{}.  P[andE  on  hypnum])
    {}\mRightarrow{}  (\mforall{}hypnum:\mBbbN{}.  P[orE  on  hypnum])
    {}\mRightarrow{}  (\mforall{}hypnum:\mBbbN{}.  P[impE  on  hypnum])
    {}\mRightarrow{}  (\mforall{}hypnum:\mBbbN{}.  \mforall{}var:\mBbbZ{}.    P[allE  on  hypnum  with  var])
    {}\mRightarrow{}  (\mforall{}hypnum:\mBbbN{}.  \mforall{}var:\mBbbZ{}.    P[existsE  on  hypnum  with  var])
    {}\mRightarrow{}  \{\mforall{}v:mFOLRule().  P[v]\})



Date html generated: 2018_05_21-PM-10_26_52
Last ObjectModification: 2017_07_26-PM-06_39_53

Theory : minimal-first-order-logic


Home Index