Nuprl Lemma : array-model_wf

[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)].  (array-model(AType) ∈ array-model-type{i:l}(AType;Val;n))


Proof




Definitions occuring in Statement :  array-model: array-model(AType) array-model-type: array-model-type{i:l}(AType;Val;n) array: array{i:l}(Val;n) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T array-model: array-model(AType) array-model-type: array-model-type{i:l}(AType;Val;n) let: let subtype_rel: A ⊆B M-map: M-map(mnd) pi1: fst(t) array-monad: array-monad(AType) mk_monad: mk_monad(M;return;bind) all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] prop: nat: array-monad': array-monad'(AType)
Lemmas referenced :  M-return_wf array-monad_wf M-bind_wf subtype_rel_self Arr_wf newarray_wf pi1_wf equal_wf M-map_wf it_wf upd_wf unit_wf2 int_seg_wf array-monad'_wf idx_wf array_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule independent_pairEquality isect_memberEquality extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis applyEquality because_Cache universeEquality lambdaEquality functionEquality productEquality lambdaFormation productElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination natural_numberEquality setElimination rename isectEquality instantiate functionExtensionality axiomEquality

Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].
    (array-model(AType)  \mmember{}  array-model-type\{i:l\}(AType;Val;n))



Date html generated: 2017_10_01-AM-08_43_58
Last ObjectModification: 2017_07_26-PM-04_30_02

Theory : monads


Home Index