Nuprl Lemma : fps-product-reindex

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[T,A:Type]. ∀[g:T ⟶ A]. ∀[h:A ⟶ T].
    ∀[f:T ⟶ PowerSeries(X;r)]. ∀[b:bag(T)].  (x∈b).f[x] = Π(x∈bag-map(g;b)).f[h x] ∈ PowerSeries(X;r)) 
    supposing ∀x:T. (x (h (g x)) ∈ T) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-product: Π(x∈b).f[x] power-series: PowerSeries(X;r) bag-map: bag-map(f;bs) bag: bag(T) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fps-product: Π(x∈b).f[x] bag-product: Πx ∈ b. f[x] and: P ∧ Q cand: c∧ B comm: Comm(T;op) infix_ap: y squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q assoc: Assoc(T;op) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  bag-summation-reindex power-series_wf fps-mul_wf fps-one_wf equal_wf squash_wf true_wf fps-mul-comm iff_weakening_equal mul_assoc_fps bag_wf all_wf crng_wf valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality independent_isectElimination sqequalRule applyEquality imageElimination equalityTransitivity equalitySymmetry because_Cache natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination isect_memberEquality axiomEquality independent_pairFormation functionExtensionality functionEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[T,A:Type].  \mforall{}[g:T  {}\mrightarrow{}  A].  \mforall{}[h:A  {}\mrightarrow{}  T].
        \mforall{}[f:T  {}\mrightarrow{}  PowerSeries(X;r)].  \mforall{}[b:bag(T)].    (\mPi{}(x\mmember{}b).f[x]  =  \mPi{}(x\mmember{}bag-map(g;b)).f[h  x]) 
        supposing  \mforall{}x:T.  (x  =  (h  (g  x))) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_57_11
Last ObjectModification: 2017_07_26-PM-06_33_15

Theory : power!series


Home Index