Nuprl Lemma : fps-support-degree-bound
∀[r:CRng]. ∀[f:PowerSeries(r)]. ∀[s:bag(Atom)].  (fps-support(r;f;s) ⇒ fps-degree-bound(r;f;#(s)))
Proof
Definitions occuring in Statement : 
fps-support: fps-support(r;f;s), 
fps-degree-bound: fps-degree-bound(r;f;d), 
power-series: PowerSeries(X;r), 
bag-size: #(bs), 
bag: bag(T), 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
atom: Atom, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
fps-support: fps-support(r;f;s), 
fps-degree-bound: fps-degree-bound(r;f;d), 
uimplies: b supposing a, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
not: ¬A, 
le: A ≤ B, 
and: P ∧ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
all: ∀x:A. B[x], 
top: Top
Lemmas referenced : 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
sub-bag-size, 
sub-bag_wf, 
crng_wf, 
power-series_wf, 
bag_wf, 
nat_wf, 
fps-support_wf, 
bag-size_wf, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
hypothesis, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
lemma_by_obid, 
atomEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}[r:CRng].  \mforall{}[f:PowerSeries(r)].  \mforall{}[s:bag(Atom)].    (fps-support(r;f;s)  {}\mRightarrow{}  fps-degree-bound(r;f;\#(s)))
Date html generated:
2016_05_15-PM-10_03_18
Last ObjectModification:
2016_01_16-PM-03_06_55
Theory : power!series
Home
Index