Nuprl Lemma : fps-support-degree-bound

[r:CRng]. ∀[f:PowerSeries(r)]. ∀[s:bag(Atom)].  (fps-support(r;f;s)  fps-degree-bound(r;f;#(s)))


Proof




Definitions occuring in Statement :  fps-support: fps-support(r;f;s) fps-degree-bound: fps-degree-bound(r;f;d) power-series: PowerSeries(X;r) bag-size: #(bs) bag: bag(T) uall: [x:A]. B[x] implies:  Q atom: Atom crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q fps-support: fps-support(r;f;s) fps-degree-bound: fps-degree-bound(r;f;d) uimplies: supposing a prop: subtype_rel: A ⊆B nat: not: ¬A le: A ≤ B and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top
Lemmas referenced :  int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf intformle_wf intformand_wf satisfiable-full-omega-tt sub-bag-size sub-bag_wf crng_wf power-series_wf bag_wf nat_wf fps-support_wf bag-size_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution hypothesis isectElimination thin hypothesisEquality independent_isectElimination lemma_by_obid atomEquality applyEquality because_Cache sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality axiomEquality setElimination rename equalityTransitivity equalitySymmetry productElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}[r:CRng].  \mforall{}[f:PowerSeries(r)].  \mforall{}[s:bag(Atom)].    (fps-support(r;f;s)  {}\mRightarrow{}  fps-degree-bound(r;f;\#(s)))



Date html generated: 2016_05_15-PM-10_03_18
Last ObjectModification: 2016_01_16-PM-03_06_55

Theory : power!series


Home Index