Nuprl Lemma : normalize-constraints_wf
∀[k:ℕ]. ∀[A:(ℕ ⟶ ℚ × ℤ) List].  (normalize-constraints(k;A) ∈ (ℕ ⟶ ℚ × ℤ) List)
Proof
Definitions occuring in Statement : 
normalize-constraints: normalize-constraints(k;A)
, 
rationals: ℚ
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
squash: ↓T
, 
normalize-constraints: normalize-constraints(k;A)
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
Lemmas referenced : 
evalall-reduce, 
int-valueall-type, 
function-valueall-type, 
product-valueall-type, 
list-valueall-type, 
valueall-type-has-valueall, 
list_wf, 
value-type_wf, 
rationals-value-type, 
le_wf, 
false_wf, 
normalize-constraint_wf, 
rationals_wf, 
nat_wf, 
map_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
functionEquality, 
hypothesis, 
intEquality, 
lambdaEquality, 
hypothesisEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
introduction, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_isectElimination, 
independent_functionElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
callbyvalueReduce
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[A:(\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}  \mtimes{}  \mBbbZ{})  List].    (normalize-constraints(k;A)  \mmember{}  (\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}  \mtimes{}  \mBbbZ{})  List)
Date html generated:
2016_05_15-PM-11_24_20
Last ObjectModification:
2016_01_16-PM-09_14_53
Theory : rationals
Home
Index