Nuprl Lemma : normalize-constraint_wf

[k:ℕ]. ∀[A:ℕ ⟶ ℚ × ℤ].  (normalize-constraint(k;A) ∈ ℕ ⟶ ℚ × ℤ)


Proof




Definitions occuring in Statement :  normalize-constraint: normalize-constraint(k;p) rationals: nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T normalize-constraint: normalize-constraint(k;p) has-value: (a)↓ uimplies: supposing a nat: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] callbyvalueall: callbyvalueall has-valueall: has-valueall(a)
Lemmas referenced :  value-type-has-value int-value-type valueall-type-has-valueall list_wf rationals_wf list-valueall-type rationals-valueall-type map_wf int_seg_wf subtype_rel_dep_function nat_wf int_seg_subtype_nat false_wf subtype_rel_self upto_wf evalall-reduce select?_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productElimination thin callbyvalueReduce lemma_by_obid sqequalHypSubstitution isectElimination intEquality independent_isectElimination hypothesis hypothesisEquality natural_numberEquality setElimination rename applyEquality lambdaEquality independent_pairFormation lambdaFormation because_Cache independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry productEquality functionEquality isect_memberEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[A:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}  \mtimes{}  \mBbbZ{}].    (normalize-constraint(k;A)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbQ{}  \mtimes{}  \mBbbZ{})



Date html generated: 2016_05_15-PM-11_24_02
Last ObjectModification: 2015_12_27-PM-07_30_37

Theory : rationals


Home Index