Nuprl Lemma : q-archimedean-ext
∀a:ℚ. ∃n:ℕ. ((-(n) ≤ a) ∧ (a ≤ n))
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qmul: r * s
, 
rationals: ℚ
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
minus: -n
, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T
, 
experimental: experimental{impliesFunctionality}(possibleextract)
, 
q-archimedean, 
better-q-elim, 
decidable__le, 
rem_bounds_1, 
qmul_preserves_qle, 
rem_bounds_2, 
q-elim, 
decidable__and, 
decidable__not, 
decidable__less_than', 
any: any x
, 
decidable__implies, 
decidable__false, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
q-archimedean, 
lifting-strict-spread, 
istype-void, 
strict4-spread, 
lifting-strict-decide, 
strict4-decide, 
lifting-strict-less, 
better-q-elim, 
decidable__le, 
rem_bounds_1, 
qmul_preserves_qle, 
rem_bounds_2, 
q-elim, 
decidable__and, 
decidable__not, 
decidable__less_than', 
decidable__implies, 
decidable__false
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination
Latex:
\mforall{}a:\mBbbQ{}.  \mexists{}n:\mBbbN{}.  ((-(n)  \mleq{}  a)  \mwedge{}  (a  \mleq{}  n))
Date html generated:
2019_10_16-PM-00_32_08
Last ObjectModification:
2019_06_26-PM-04_08_18
Theory : rationals
Home
Index