Nuprl Lemma : q-archimedean-ext

a:ℚ. ∃n:ℕ((-(n) ≤ a) ∧ (a ≤ n))


Proof




Definitions occuring in Statement :  qle: r ≤ s qmul: s rationals: nat: all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q minus: -n natural_number: $n
Definitions unfolded in proof :  member: t ∈ T experimental: experimental{impliesFunctionality}(possibleextract) q-archimedean better-q-elim decidable__le rem_bounds_1 qmul_preserves_qle rem_bounds_2 q-elim decidable__and decidable__not decidable__less_than' any: any x decidable__implies decidable__false uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  q-archimedean lifting-strict-spread istype-void strict4-spread lifting-strict-decide strict4-decide lifting-strict-less better-q-elim decidable__le rem_bounds_1 qmul_preserves_qle rem_bounds_2 q-elim decidable__and decidable__not decidable__less_than' decidable__implies decidable__false
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality_alt voidElimination independent_isectElimination

Latex:
\mforall{}a:\mBbbQ{}.  \mexists{}n:\mBbbN{}.  ((-(n)  \mleq{}  a)  \mwedge{}  (a  \mleq{}  n))



Date html generated: 2019_10_16-PM-00_32_08
Last ObjectModification: 2019_06_26-PM-04_08_18

Theory : rationals


Home Index