Nuprl Lemma : unit-functor-is-const

[A:SmallCategory]. ∀f:Functor(1;A). ∃a:cat-ob(A). (f const-functor(A;a) ∈ Functor(1;A))


Proof




Definitions occuring in Statement :  const-functor: const-functor(A;a) cat-functor: Functor(C1;C2) unit-cat: 1 cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B unit: Unit cat-ob: cat-ob(C) pi1: fst(t) unit-cat: 1 discrete-cat: discrete-cat(X) mk-cat: mk-cat prop: uimplies: supposing a cat-functor: Functor(C1;C2) and: P ∧ Q top: Top const-functor: const-functor(A;a) so_lambda: so_lambda3 so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s] it: squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  functor-ob_wf unit-cat_wf it_wf subtype_rel_self equal-wf-base equal-functors const-functor_wf cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma cat_id_tuple_lemma ob_pair_lemma ob_mk_functor_lemma cat-ob_wf arrow_pair_lemma arrow_mk_functor_lemma cat-arrow_wf equal_wf cat-functor_wf small-category_wf equal-unit squash_wf true_wf unit_wf2 cat-id_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation dependent_pairFormation applyEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality sqequalRule intEquality baseClosed because_Cache independent_isectElimination setElimination rename productElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality equalityElimination lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality functionExtensionality natural_numberEquality imageMemberEquality independent_functionElimination

Latex:
\mforall{}[A:SmallCategory].  \mforall{}f:Functor(1;A).  \mexists{}a:cat-ob(A).  (f  =  const-functor(A;a))



Date html generated: 2020_05_20-AM-07_53_41
Last ObjectModification: 2017_07_28-AM-09_19_43

Theory : small!categories


Home Index