Nuprl Lemma : unit-functor-is-const
∀[A:SmallCategory]. ∀f:Functor(1;A). ∃a:cat-ob(A). (f = const-functor(A;a) ∈ Functor(1;A))
Proof
Definitions occuring in Statement : 
const-functor: const-functor(A;a)
, 
cat-functor: Functor(C1;C2)
, 
unit-cat: 1
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
unit: Unit
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
unit-cat: 1
, 
discrete-cat: discrete-cat(X)
, 
mk-cat: mk-cat, 
prop: ℙ
, 
uimplies: b supposing a
, 
cat-functor: Functor(C1;C2)
, 
and: P ∧ Q
, 
top: Top
, 
const-functor: const-functor(A;a)
, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
it: ⋅
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
functor-ob_wf, 
unit-cat_wf, 
it_wf, 
subtype_rel_self, 
equal-wf-base, 
equal-functors, 
const-functor_wf, 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma, 
cat_id_tuple_lemma, 
ob_pair_lemma, 
ob_mk_functor_lemma, 
cat-ob_wf, 
arrow_pair_lemma, 
arrow_mk_functor_lemma, 
cat-arrow_wf, 
equal_wf, 
cat-functor_wf, 
small-category_wf, 
equal-unit, 
squash_wf, 
true_wf, 
unit_wf2, 
cat-id_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
dependent_pairFormation, 
applyEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
intEquality, 
baseClosed, 
because_Cache, 
independent_isectElimination, 
setElimination, 
rename, 
productElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityElimination, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
functionExtensionality, 
natural_numberEquality, 
imageMemberEquality, 
independent_functionElimination
Latex:
\mforall{}[A:SmallCategory].  \mforall{}f:Functor(1;A).  \mexists{}a:cat-ob(A).  (f  =  const-functor(A;a))
Date html generated:
2020_05_20-AM-07_53_41
Last ObjectModification:
2017_07_28-AM-09_19_43
Theory : small!categories
Home
Index