Nuprl Lemma : bst_node?_wf

[E:Type]. ∀[v:bs_tree(E)].  (bst_node?(v) ∈ 𝔹)


Proof




Definitions occuring in Statement :  bst_node?: bst_node?(v) bs_tree: bs_tree(E) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a sq_type: SQType(T) guard: {T} eq_atom: =a y ifthenelse: if then else fi  bst_null: bst_null() bst_node?: bst_node?(v) pi1: fst(t) bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q bnot: ¬bb assert: b false: False bst_leaf: bst_leaf(value) bst_node: bst_node(left;value;right)
Lemmas referenced :  bs_tree-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base unit_wf2 unit_subtype_base it_wf bfalse_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom btrue_wf bs_tree_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality promote_hyp productElimination hypothesis_subsumption hypothesis applyEquality sqequalRule tokenEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination instantiate cumulativity atomEquality dependent_functionElimination independent_functionElimination because_Cache dependent_pairFormation voidElimination universeEquality

Latex:
\mforall{}[E:Type].  \mforall{}[v:bs\_tree(E)].    (bst\_node?(v)  \mmember{}  \mBbbB{})



Date html generated: 2017_10_01-AM-08_30_55
Last ObjectModification: 2017_07_26-PM-04_24_50

Theory : tree_1


Home Index