Nuprl Lemma : select_fun_last_wf
∀[m:ℕ]. ∀[A:ℕm + 1 ⟶ Type]. ∀[g:∀[T:Type]. (funtype(m + 1;A;T) ⟶ T)].  (select_fun_last(g;m) ∈ A m)
Proof
Definitions occuring in Statement : 
select_fun_last: select_fun_last(g;m)
, 
funtype: funtype(n;A;T)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
select_fun_last: select_fun_last(g;m)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
Lemmas referenced : 
nat_wf, 
int_seg_wf, 
funtype_wf, 
uall_wf, 
lelt_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
select_fun_ap_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
because_Cache, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality, 
functionEquality, 
cumulativity, 
applyEquality
Latex:
\mforall{}[m:\mBbbN{}].  \mforall{}[A:\mBbbN{}m  +  1  {}\mrightarrow{}  Type].  \mforall{}[g:\mforall{}[T:Type].  (funtype(m  +  1;A;T)  {}\mrightarrow{}  T)].
    (select\_fun\_last(g;m)  \mmember{}  A  m)
Date html generated:
2016_05_15-PM-02_10_20
Last ObjectModification:
2016_01_15-PM-10_20_50
Theory : untyped!computation
Home
Index