Nuprl Lemma : select_fun_last_wf

[m:ℕ]. ∀[A:ℕ1 ⟶ Type]. ∀[g:∀[T:Type]. (funtype(m 1;A;T) ⟶ T)].  (select_fun_last(g;m) ∈ m)


Proof




Definitions occuring in Statement :  select_fun_last: select_fun_last(g;m) funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T select_fun_last: select_fun_last(g;m) nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s]
Lemmas referenced :  nat_wf int_seg_wf funtype_wf uall_wf lelt_wf int_formula_prop_less_lemma intformless_wf decidable__lt le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties select_fun_ap_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality addEquality setElimination rename hypothesisEquality natural_numberEquality hypothesis dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache productElimination axiomEquality equalityTransitivity equalitySymmetry instantiate universeEquality functionEquality cumulativity applyEquality

Latex:
\mforall{}[m:\mBbbN{}].  \mforall{}[A:\mBbbN{}m  +  1  {}\mrightarrow{}  Type].  \mforall{}[g:\mforall{}[T:Type].  (funtype(m  +  1;A;T)  {}\mrightarrow{}  T)].
    (select\_fun\_last(g;m)  \mmember{}  A  m)



Date html generated: 2016_05_15-PM-02_10_20
Last ObjectModification: 2016_01_15-PM-10_20_50

Theory : untyped!computation


Home Index