Nuprl Lemma : select_fun_ap_wf

[n:ℕ]. ∀[m:ℕn]. ∀[A:ℕn ⟶ Type]. ∀[g:∀[T:Type]. (funtype(n;A;T) ⟶ T)].  (select_fun_ap(g;n;m) ∈ m)


Proof




Definitions occuring in Statement :  select_fun_ap: select_fun_ap(g;n;m) funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T select_fun_ap: select_fun_ap(g;n;m) subtype_rel: A ⊆B nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: le: A ≤ B less_than: a < b guard: {T} uiff: uiff(P;Q) less_than': less_than'(a;b) so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  subtract: m
Lemmas referenced :  int_seg_wf funtype_wf funtype-split nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf lelt_wf mk_lambdas_wf subtract_wf int_seg_properties decidable__le intformle_wf itermSubtract_wf int_formula_prop_le_lemma int_term_value_subtract_lemma le_wf add-member-int_seg1 int_seg_subtype_nat false_wf subtype_rel_dep_function int_seg_subtype subtype_rel_self funtype-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_subtype_base zero-add subtype_rel_weakening ext-eq_weakening uall_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality hypothesisEquality lambdaEquality isectElimination functionExtensionality extract_by_obid sqequalHypSubstitution thin natural_numberEquality setElimination rename hypothesis equalityTransitivity equalitySymmetry isectEquality universeEquality cumulativity functionEquality because_Cache dependent_set_memberEquality productElimination independent_pairFormation dependent_functionElimination addEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll lambdaFormation instantiate equalityElimination promote_hyp independent_functionElimination axiomEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[g:\mforall{}[T:Type].  (funtype(n;A;T)  {}\mrightarrow{}  T)].
    (select\_fun\_ap(g;n;m)  \mmember{}  A  m)



Date html generated: 2017_10_01-AM-08_40_11
Last ObjectModification: 2017_07_26-PM-04_27_56

Theory : untyped!computation


Home Index