Nuprl Lemma : omral_alg_umap_tri_comm
∀g:OCMon. ∀a:CDRng. ∀n:algebra{i:l}(a). ∀f:|g| ⟶ n.car.  ((alg_umap(n,f) o (λk.inj(k,1))) = f ∈ (|g| ⟶ n.car))
Proof
Definitions occuring in Statement : 
omral_alg_umap: alg_umap(n,f), 
omral_inj: inj(k,v), 
algebra: algebra{i:l}(A), 
alg_car: a.car, 
compose: f o g, 
all: ∀x:A. B[x], 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
equal: s = t ∈ T, 
cdrng: CDRng, 
rng_one: 1, 
ocmon: OCMon, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
omral_alg_umap: alg_umap(n,f), 
compose: f o g, 
omralist: omral(g;r), 
oalist: oal(a;b), 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
pi1: fst(t), 
dset_list: s List, 
set_prod: s × t, 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
add_grp_of_rng: r↓+gp, 
grp_id: e, 
pi2: snd(t), 
tlambda: λx:T. b[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
ocmon: OCMon, 
abmonoid: AbMon, 
mon: Mon, 
cdrng: CDRng, 
crng: CRng, 
rng: Rng, 
algebra: algebra{i:l}(A), 
module: A-Module, 
squash: ↓T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
omon: OMon, 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
bfalse: ff, 
infix_ap: x f y, 
so_apply: x[s], 
cand: A c∧ B, 
rng_of_alg: a↓rg, 
rng_car: |r|, 
grp_car: |g|, 
dset: DSet, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
finite_set: FiniteSet{s}, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
rng_mssum: rng_mssum, 
top: Top, 
rng_zero: 0, 
abgrp: AbGrp, 
grp: Group{i}, 
iabmonoid: IAbMonoid, 
imon: IMonoid, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
grp_car_wf, 
alg_car_wf, 
rng_car_wf, 
algebra_wf, 
cdrng_wf, 
ocmon_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_mssum_functionality_wrt_equal, 
oset_of_ocmon_wf, 
subtype_rel_sets, 
abmonoid_wf, 
ulinorder_wf, 
assert_wf, 
infix_ap_wf, 
bool_wf, 
grp_le_wf, 
grp_eq_wf, 
eqtt_to_assert, 
cancel_wf, 
grp_op_wf, 
uall_wf, 
monot_wf, 
rng_of_alg_wf2, 
set_car_wf, 
dset_of_mon_wf0, 
add_grp_of_rng_wf, 
rng_of_alg_wf, 
alg_act_wf, 
lookup_wf, 
oset_of_ocmon_wf0, 
rng_zero_wf, 
omral_inj_wf, 
rng_one_wf, 
omralist_wf, 
dset_wf, 
omral_dom_wf, 
rng_eq_wf, 
assert_of_rng_eq, 
cdrng_subtype_drng, 
null_mset_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
mset_inj_wf, 
loset_wf, 
omral_dom_inj, 
finite_set_wf, 
mset_mem_wf, 
iff_weakening_equal, 
uiff_transitivity, 
equal-wf-T-base, 
mset_for_null_lemma, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
module_over_triv_rng, 
mset_for_mset_inj, 
add_grp_of_rng_wf_b, 
grp_sig_wf, 
monoid_p_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
comm_wf, 
set_wf, 
lookup_omral_inj, 
mon_when_true, 
assert_of_mon_eq, 
abdmonoid_dmon, 
ocmon_subtype_abdmonoid, 
subtype_rel_transitivity, 
abdmonoid_wf, 
dmon_wf, 
module_action_p
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
functionExtensionality, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
dependent_functionElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
instantiate, 
because_Cache, 
productEquality, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
setEquality, 
independent_pairFormation, 
dependent_pairFormation, 
promote_hyp, 
cumulativity, 
voidElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality, 
voidEquality, 
impliesFunctionality
Latex:
\mforall{}g:OCMon.  \mforall{}a:CDRng.  \mforall{}n:algebra\{i:l\}(a).  \mforall{}f:|g|  {}\mrightarrow{}  n.car.    ((alg\_umap(n,f)  o  (\mlambda{}k.inj(k,1)))  =  f)
Date html generated:
2017_10_01-AM-10_07_36
Last ObjectModification:
2017_03_03-PM-01_16_56
Theory : polynom_3
Home
Index