Nuprl Lemma : csm-equiv_term
∀[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(T;A)}]. ∀[t:{G, phi ⊢ _:T}]. ∀[a:{G ⊢ _:A}].
∀[c:{G, phi ⊢ _:(Path_A a app(equiv-fun(f); t))}]. ∀[cA:G +⊢ Compositon(A)]. ∀[cT:G +⊢ Compositon(T)]. ∀[H:j⊢].
∀[s:H j⟶ G].
  ((equiv f [phi ⊢→ (t,c)] a)s
  = equiv (f)s [(phi)s ⊢→ ((t)s,(c)s)] (a)s
  ∈ {H ⊢ _:Fiber(equiv-fun((f)s);(a)s)[(phi)s |⟶ fiber-point((t)s;(c)s)]})
Proof
Definitions occuring in Statement : 
equiv_term: equiv f [phi ⊢→ (t,c)] a
, 
csm-comp-structure: (cA)tau
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
equiv-fun: equiv-fun(f)
, 
cubical-equiv: Equiv(T;A)
, 
fiber-point: fiber-point(t;c)
, 
cubical-fiber: Fiber(w;a)
, 
path-type: (Path_A a b)
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-app: app(w; u)
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
equiv_term: equiv f [phi ⊢→ (t,c)] a
, 
squash: ↓T
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
Lemmas referenced : 
cubical-app_wf_fun, 
thin-context-subset, 
cubical-fun-subset, 
equiv-fun_wf, 
subset-cubical-term, 
context-subset-is-subset, 
cubical-fun_wf, 
fiber-subset, 
cubical-fiber_wf, 
subset-cubical-type, 
cubical-term-eqcd, 
context-subset_wf, 
fiber-point_wf, 
context-subset-term-subtype, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
context-subset-map, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-type_wf, 
csm-cubical-fiber, 
csm-ap-type_wf, 
csm-cubical-fun, 
subtype_rel_self, 
iff_weakening_equal, 
cube_set_map_wf, 
composition-structure_wf, 
cubical_set_cumulativity-i-j, 
istype-cubical-term, 
path-type_wf, 
cubical-equiv_wf, 
cubical_set_wf, 
constrained-cubical-term_wf, 
cubical-type-cumulativity2, 
csm-equiv-term, 
fiber-comp_wf, 
cube_set_map_cumulativity-i-j, 
csm-fiber-comp-sq, 
csm-equiv-fun, 
csm-fiber-comp, 
composition-structure-cumulativity, 
csm-cubical-equiv, 
sub_cubical_set_self, 
subset-cubical-term2, 
equiv-term_wf, 
csm-cubical-app, 
csm-path-type, 
csm-fiber-point
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
Error :memTop, 
applyEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
cumulativity, 
universeIsType, 
universeEquality, 
hyp_replacement, 
instantiate, 
imageElimination, 
dependent_functionElimination, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityIstype, 
independent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
applyLambdaEquality
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(T;A)\}].  \mforall{}[t:\{G,  phi  \mvdash{}  \_:T\}].
\mforall{}[a:\{G  \mvdash{}  \_:A\}].  \mforall{}[c:\{G,  phi  \mvdash{}  \_:(Path\_A  a  app(equiv-fun(f);  t))\}].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].
\mforall{}[cT:G  +\mvdash{}  Compositon(T)].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((equiv  f  [phi  \mvdash{}\mrightarrow{}  (t,c)]  a)s  =  equiv  (f)s  [(phi)s  \mvdash{}\mrightarrow{}  ((t)s,(c)s)]  (a)s)
Date html generated:
2020_05_20-PM-05_38_18
Last ObjectModification:
2020_05_02-PM-03_59_30
Theory : cubical!type!theory
Home
Index