Nuprl Lemma : nc-e'-comp-m-2
∀[I,J:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[j:{j:ℕ| ¬j ∈ J} ]. ∀[g:J ⟶ I]. ∀[l:{i:ℕ| ¬i ∈ J+j} ].
  (s ⋅ g,i=j ⋅ m(j;l) = g ⋅ s ⋅ s ∈ J+j+l ⟶ I)
Proof
Definitions occuring in Statement : 
nc-e': g,i=j
, 
nc-m: m(i;j)
, 
nc-s: s
, 
add-name: I+i
, 
nh-comp: g ⋅ f
, 
names-hom: I ⟶ J
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
names-hom: I ⟶ J
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
, 
top: Top
, 
compose: f o g
, 
nc-s: s
, 
names: names(I)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
guard: {T}
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
nc-e': g,i=j
, 
sq_stable: SqStable(P)
, 
nc-m: m(i;j)
Lemmas referenced : 
names_wf, 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
add-name_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-void, 
names-hom_wf, 
nh-comp-sq, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
dM-lift_wf2, 
nc-m_wf, 
trivial-member-add-name1, 
nc-e'_wf, 
names-subtype, 
f-subset-add-name, 
nc-s_wf, 
squash_wf, 
true_wf, 
istype-universe, 
dM-lift-inc, 
dM-lift-s, 
subtype_rel_self, 
iff_weakening_equal, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
bool_subtype_base, 
int_subtype_base, 
not_wf, 
set_subtype_base, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
eq_int_wf, 
fset_wf, 
deq_wf, 
sq_stable__not, 
dM-point-subtype, 
uall_wf, 
f-subset_wf, 
dM-lift-is-id2, 
f-subset-add-name1, 
equal-wf-T-base, 
dM_inc_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
functionExtensionality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setIsType, 
sqequalRule, 
functionIsType, 
universeIsType, 
applyEquality, 
intEquality, 
independent_isectElimination, 
because_Cache, 
lambdaEquality_alt, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
productEquality, 
cumulativity, 
isectEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
equalityIsType1, 
promote_hyp, 
closedConclusion, 
baseApply, 
equalityIsType4, 
equalityElimination, 
lambdaFormation_alt, 
hyp_replacement, 
lambdaEquality, 
dependent_set_memberEquality, 
dependent_pairFormation, 
isect_memberEquality, 
voidEquality, 
applyLambdaEquality
Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].  \mforall{}[g:J  {}\mrightarrow{}  I].  \mforall{}[l:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  J+j\}  ].
    (s  \mcdot{}  g,i=j  \mcdot{}  m(j;l)  =  g  \mcdot{}  s  \mcdot{}  s)
Date html generated:
2020_05_20-PM-01_37_41
Last ObjectModification:
2019_12_10-PM-01_11_29
Theory : cubical!type!theory
Home
Index