Nuprl Lemma : transEquiv-trans-eq-path-trans
∀[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[p:{G ⊢ _:(Path_c𝕌 A B)}].
  (transEquivFun(p) = (PathTransport(p) o ConstTrans(decode(A))) ∈ {G ⊢ _:(decode(A) ⟶ decode(B))})
Proof
Definitions occuring in Statement : 
transEquiv-trans: transEquivFun(p), 
path-trans: PathTransport(p), 
universe-comp-op: compOp(t), 
universe-decode: decode(t), 
cubical-universe: c𝕌, 
const-transport-fun: ConstTrans(A), 
path-type: (Path_A a b), 
cubical-fun-comp: (f o g), 
cubical-fun: (A ⟶ B), 
cubical-term: {X ⊢ _:A}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
cubical-term-at: u(a), 
cubical-fun-comp: (f o g), 
cubical-app: app(w; u), 
const-transport-fun: ConstTrans(A), 
csm-ap-term: (t)s, 
cubical-lam: cubical-lam(X;b), 
transport-const: transport-const(G;cA;a), 
cubical-lambda: (λb), 
all: ∀x:A. B[x], 
cc-adjoin-cube: (v;u), 
cc-snd: q, 
csm-composition: (comp)sigma, 
transport: transport(Gamma;a), 
pi2: snd(t), 
composition-term: comp cA [phi ⊢→ u] a0, 
discrete-cubical-term: discr(t), 
face-0: 0(𝔽), 
cc-fst: p, 
csm-ap: (s)x, 
cube-context-adjoin: X.A, 
pi1: fst(t), 
squash: ↓T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
cubical-universe: c𝕌, 
names: names(I), 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
fibrant-type: FibrantType(X), 
composition-op: Gamma ⊢ CompOp(A), 
formal-cube: formal-cube(I), 
bdd-distributive-lattice: BoundedDistributiveLattice, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
I_cube: A(I), 
functor-ob: ob(F), 
face-presheaf: 𝔽, 
cube-set-restriction: f(s), 
fl-morph: <f>, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1), 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
lattice-0: 0, 
empty-fset: {}, 
nil: [], 
it: ⋅, 
cand: A c∧ B, 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u), 
cubical-type-at: A(a), 
closed-type-to-type: closed-type-to-type(T), 
closed-cubical-universe: cc𝕌, 
names-hom: I ⟶ J, 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u)
Lemmas referenced : 
cubical-term-at_wf, 
transEquiv-trans-eq2, 
cubical-fun-equal, 
universe-decode_wf, 
cubical-fun-comp_wf, 
const-transport-fun_wf, 
universe-comp-op_wf, 
path-trans_wf, 
cc_fst_adjoin_cube_lemma, 
istype-cubical-type-at, 
cube-set-restriction_wf, 
names-hom_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
istype-cubical-term, 
path-type_wf, 
cubical-universe_wf, 
istype-cubical-universe-term, 
cubical_set_wf, 
cube_set_restriction_pair_lemma, 
path-trans-sq2, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
add-name_wf, 
new-name_wf, 
nc-s_wf, 
f-subset-add-name, 
cube-set-restriction-id, 
subtype_rel_self, 
iff_weakening_equal, 
path-type-at, 
nh-id_wf, 
dM_inc_wf, 
trivial-member-add-name1, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
I_cube_pair_redex_lemma, 
lattice-0_wf, 
face_lattice_wf, 
face-presheaf_wf2, 
member-empty-cubical-subset, 
cubical-path-0_wf, 
formal-cube_wf1, 
pi1_wf_top, 
cubical-type_wf, 
cubical-type-cumulativity2, 
cubical-path-1_wf, 
subtype_rel_dep_function, 
cubical-type-at_wf, 
lattice-point_wf, 
dM_wf, 
fibrant-type_wf_formal-cube, 
nh-comp_wf, 
nc-0_wf, 
universe-type-at, 
universe-path-type-lemma-0, 
cube-set-restriction-comp, 
nh-id-left, 
s-comp-nc-0-new, 
equal-wf-T-base, 
nh-id-right, 
cubical-path-condition-0, 
cubical-path-condition_wf, 
nc-1_wf, 
universe-path-type-lemma-1, 
s-comp-if-lemma1, 
s-comp-nc-1-new, 
nh-comp-assoc, 
empty-cubical-subset-term, 
cube-set-restriction-when-id, 
face-lattice-property, 
free-dist-lattice-with-constraints-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
Error :memTop, 
universeIsType, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
universeEquality, 
setElimination, 
rename, 
inhabitedIsType, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
intEquality, 
lambdaFormation_alt, 
independent_pairEquality, 
equalityIstype, 
cumulativity, 
hyp_replacement, 
functionEquality, 
equalityElimination
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[p:\{G  \mvdash{}  \_:(Path\_c\mBbbU{}  A  B)\}].
    (transEquivFun(p)  =  (PathTransport(p)  o  ConstTrans(decode(A))))
Date html generated:
2020_05_20-PM-07_39_31
Last ObjectModification:
2020_05_01-AM-10_19_51
Theory : cubical!type!theory
Home
Index