Nuprl Lemma : path-comp-union
∀[A,B:SeparationSpace].  (path-comp-property(A) ⇒ path-comp-property(B) ⇒ path-comp-property(A + B))
Proof
Definitions occuring in Statement : 
path-comp-property: path-comp-property(X), 
union-ss: ss1 + ss2, 
separation-space: SeparationSpace, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
path-comp-property: path-comp-property(X), 
all: ∀x:A. B[x], 
member: t ∈ T, 
or: P ∨ Q, 
and: P ∧ Q, 
cand: A c∧ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
guard: {T}, 
true: True, 
record-select: r.x, 
ss-sep: x # y, 
union-sep: union-sep(ss1;ss2;p;q), 
ss-eq: x ≡ y, 
assert: ↑b, 
outl: outl(x), 
isl: isl(x), 
btrue: tt, 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
mk-ss: Point=P #=Sep cotrans=C, 
ss-point: Point(ss), 
union-ss: ss1 + ss2, 
uimplies: b supposing a, 
top: Top, 
path-at: p@t, 
exists: ∃x:A. B[x], 
squash: ↓T, 
less_than: a < b, 
rneq: x ≠ y, 
path-comp-rel: path-comp-rel(X;f;g;h), 
rdiv: (x/y), 
uiff: uiff(P;Q), 
req_int_terms: t1 ≡ t2, 
rccint: [l, u], 
i-member: r ∈ I, 
subtype_rel: A ⊆r B, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
decidable: Dec(P), 
nat_plus: ℕ+, 
isr: isr(x), 
outr: outr(x)
Lemmas referenced : 
path-in-union, 
ss-eq_wf, 
union-ss_wf, 
path-at_wf, 
member_rccint_lemma, 
rleq-int, 
istype-false, 
int-to-real_wf, 
rleq_wf, 
ss-point_wf, 
path-ss_wf, 
path-comp-property_wf, 
separation-space_wf, 
istype-true, 
rec_select_update_lemma, 
rleq_weakening_equal, 
istype-void, 
path-comp-rel_wf, 
unit_ss_point_lemma, 
unit-ss_wf, 
real_wf, 
path-ss-point, 
rless_wf, 
rless-int, 
rdiv_wf, 
rccint_wf, 
i-member_wf, 
rinv_wf2, 
itermConstant_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermSubtract_wf, 
rmul_preserves_rleq2, 
rmul-nonneg-case1, 
rmul_wf, 
rleq_functionality, 
req_transitivity, 
rmul-rinv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
subtype_rel_self, 
rleq_transitivity, 
istype-less_than, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
intformless_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__lt, 
rleq-int-fractions3, 
rleq-implies-rleq, 
rsub_wf, 
rmul-int, 
rleq-int-fractions2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
universeIsType, 
hypothesis, 
sqequalRule, 
Error :memTop, 
natural_numberEquality, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
productIsType, 
inhabitedIsType, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
functionIsTypeImplies, 
lambdaEquality_alt, 
independent_isectElimination, 
voidElimination, 
isect_memberEquality_alt, 
dependent_pairFormation_alt, 
applyEquality, 
setIsType, 
functionIsType, 
rename, 
setElimination, 
inlEquality_alt, 
baseClosed, 
imageMemberEquality, 
inrFormation_alt, 
closedConclusion, 
promote_hyp, 
approximateComputation, 
int_eqEquality, 
setEquality, 
inrEquality_alt
Latex:
\mforall{}[A,B:SeparationSpace].
    (path-comp-property(A)  {}\mRightarrow{}  path-comp-property(B)  {}\mRightarrow{}  path-comp-property(A  +  B))
Date html generated:
2020_05_20-PM-01_21_30
Last ObjectModification:
2020_02_08-AM-11_39_59
Theory : intuitionistic!topology
Home
Index