Nuprl Lemma : decidable__all-unit-ball-approx

k,n:ℕ.  ∀[P:unit-ball-approx(n;k) ⟶ ℙ]. ((∀p:unit-ball-approx(n;k). Dec(P[p]))  Dec(∀p:unit-ball-approx(n;k). P[p]))


Proof




Definitions occuring in Statement :  unit-ball-approx: unit-ball-approx(n;k) nat: decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A false: False so_apply: x[s] prop: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_lambda: λ2x.t[x] ext-eq: A ≡ B subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T unit-ball-approx: unit-ball-approx(n;k) subtract: m sq_type: SQType(T) guard: {T} sq_stable: SqStable(P) true: True extend-approx-ball: extend-approx-ball(n;p;z) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  unit-ball-approx_wf istype-void istype-le decidable_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma istype-less_than primrec-wf2 istype-nat unit-ball-approx0 subtype_rel_self int_seg_wf le_wf sum_wf int_seg_properties extend-approx-ball_wf subtype_base_sq int_subtype_base add-associates add-swap add-commutes zero-add decidable__all_int_seg decidable__implies unit-ball-approx-subtype decidable__lt sq_stable__le sum-unroll istype-top lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin isect_memberFormation_alt sqequalRule functionIsType universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation voidElimination hypothesis hypothesisEquality applyEquality universeEquality rename setElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt isectIsType because_Cache functionEquality setIsType instantiate isectEquality cumulativity inhabitedIsType productElimination inlFormation_alt inrFormation_alt hyp_replacement equalitySymmetry applyLambdaEquality minusEquality addEquality imageElimination multiplyEquality equalityTransitivity intEquality productIsType lessCases axiomSqEquality isectIsTypeImplies imageMemberEquality baseClosed functionExtensionality equalityElimination equalityIstype promote_hyp

Latex:
\mforall{}k,n:\mBbbN{}.
    \mforall{}[P:unit-ball-approx(n;k)  {}\mrightarrow{}  \mBbbP{}]
        ((\mforall{}p:unit-ball-approx(n;k).  Dec(P[p]))  {}\mRightarrow{}  Dec(\mforall{}p:unit-ball-approx(n;k).  P[p]))



Date html generated: 2019_10_30-AM-11_28_38
Last ObjectModification: 2019_06_28-PM-01_56_20

Theory : real!vectors


Home Index