Nuprl Lemma : not-all-nonneg-or-nonpos
¬(∀x:ℝ. ((r0 ≤ x) ∨ (x ≤ r0)))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
, 
natural_number: $n
Definitions unfolded in proof : 
not: ¬A
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
isl: isl(x)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
, 
nat: ℕ
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
sq_exists: ∃x:A [B[x]]
, 
converges-to: lim n→∞.x[n] = y
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rtermDivide: num "/" denom
, 
rat_term_ind: rat_term_ind, 
rtermConstant: "const"
, 
rtermVar: rtermVar(var)
, 
pi1: fst(t)
, 
true: True
, 
rtermMinus: rtermMinus(num)
, 
rtermSubtract: left "-" right
, 
pi2: snd(t)
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
sq_type: SQType(T)
Lemmas referenced : 
real_wf, 
btrue_wf, 
bfalse_wf, 
btrue_neq_bfalse, 
bool_wf, 
rleq_wf, 
int-to-real_wf, 
better-continuity-for-reals, 
rdiv_wf, 
rless-int, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
rless_wf, 
istype-nat, 
nat_plus_subtype_nat, 
istype-le, 
rabs_wf, 
rsub_wf, 
nat_plus_properties, 
nat_plus_wf, 
sq_stable__rless, 
rminus_wf, 
rmul_preserves_rleq, 
rmul_wf, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
itermMinus_wf, 
rleq-int, 
istype-false, 
assert-rat-term-eq2, 
rtermMinus_wf, 
rtermSubtract_wf, 
rtermDivide_wf, 
rtermConstant_wf, 
rtermVar_wf, 
rleq-int-fractions, 
istype-less_than, 
decidable__le, 
int_term_value_mul_lemma, 
req_functionality, 
rabs-of-nonpos, 
req_weakening, 
rleq_functionality, 
req_transitivity, 
rminus_functionality, 
rmul-rinv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma, 
iff_imp_equal_bool, 
istype-assert, 
subtype_base_sq, 
bool_subtype_base, 
istype-true, 
rmul_preserves_rleq2, 
rabs-of-nonneg, 
assert_elim
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
rename, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
applyEquality, 
functionExtensionality, 
sqequalHypSubstitution, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
hypothesis, 
inhabitedIsType, 
thin, 
unionElimination, 
sqequalRule, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType, 
because_Cache, 
baseClosed, 
sqequalBase, 
independent_pairFormation, 
voidElimination, 
functionIsType, 
productIsType, 
isectElimination, 
natural_numberEquality, 
productElimination, 
unionIsType, 
setElimination, 
equalityElimination, 
closedConclusion, 
minusEquality, 
addEquality, 
independent_isectElimination, 
inrFormation_alt, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
dependent_set_memberFormation_alt, 
dependent_set_memberEquality_alt, 
imageMemberEquality, 
imageElimination, 
multiplyEquality, 
instantiate, 
cumulativity
Latex:
\mneg{}(\mforall{}x:\mBbbR{}.  ((r0  \mleq{}  x)  \mvee{}  (x  \mleq{}  r0)))
Date html generated:
2019_10_30-AM-07_19_44
Last ObjectModification:
2019_05_08-PM-07_14_45
Theory : reals
Home
Index