Nuprl Lemma : not-all-nonneg-or-nonpos

¬(∀x:ℝ((r0 ≤ x) ∨ (x ≤ r0)))


Proof




Definitions occuring in Statement :  rleq: x ≤ y int-to-real: r(n) real: all: x:A. B[x] not: ¬A or: P ∨ Q natural_number: $n
Definitions unfolded in proof :  not: ¬A implies:  Q exists: x:A. B[x] member: t ∈ T all: x:A. B[x] or: P ∨ Q isl: isl(x) and: P ∧ Q cand: c∧ B false: False uall: [x:A]. B[x] prop: bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff nat: uimplies: supposing a rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top sq_exists: x:A [B[x]] converges-to: lim n→∞.x[n] y subtype_rel: A ⊆B nat_plus: + sq_stable: SqStable(P) squash: T uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) le: A ≤ B less_than': less_than'(a;b) rat_term_to_real: rat_term_to_real(f;t) rtermDivide: num "/" denom rat_term_ind: rat_term_ind rtermConstant: "const" rtermVar: rtermVar(var) pi1: fst(t) true: True rtermMinus: rtermMinus(num) rtermSubtract: left "-" right pi2: snd(t) rdiv: (x/y) req_int_terms: t1 ≡ t2 assert: b ifthenelse: if then else fi  sq_type: SQType(T)
Lemmas referenced :  real_wf btrue_wf bfalse_wf btrue_neq_bfalse bool_wf rleq_wf int-to-real_wf better-continuity-for-reals rdiv_wf rless-int nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf rless_wf istype-nat nat_plus_subtype_nat istype-le rabs_wf rsub_wf nat_plus_properties nat_plus_wf sq_stable__rless rminus_wf rmul_preserves_rleq rmul_wf rinv_wf2 itermSubtract_wf itermMultiply_wf itermMinus_wf rleq-int istype-false assert-rat-term-eq2 rtermMinus_wf rtermSubtract_wf rtermDivide_wf rtermConstant_wf rtermVar_wf rleq-int-fractions istype-less_than decidable__le int_term_value_mul_lemma req_functionality rabs-of-nonpos req_weakening rleq_functionality req_transitivity rminus_functionality rmul-rinv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma real_term_value_minus_lemma iff_imp_equal_bool istype-assert subtype_base_sq bool_subtype_base istype-true rmul_preserves_rleq2 rabs-of-nonneg assert_elim
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut rename dependent_pairFormation_alt lambdaEquality_alt applyEquality functionExtensionality sqequalHypSubstitution hypothesisEquality introduction extract_by_obid hypothesis inhabitedIsType thin unionElimination sqequalRule equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination universeIsType because_Cache baseClosed sqequalBase independent_pairFormation voidElimination functionIsType productIsType isectElimination natural_numberEquality productElimination unionIsType setElimination equalityElimination closedConclusion minusEquality addEquality independent_isectElimination inrFormation_alt approximateComputation int_eqEquality isect_memberEquality_alt dependent_set_memberFormation_alt dependent_set_memberEquality_alt imageMemberEquality imageElimination multiplyEquality instantiate cumulativity

Latex:
\mneg{}(\mforall{}x:\mBbbR{}.  ((r0  \mleq{}  x)  \mvee{}  (x  \mleq{}  r0)))



Date html generated: 2019_10_30-AM-07_19_44
Last ObjectModification: 2019_05_08-PM-07_14_45

Theory : reals


Home Index