Nuprl Lemma : reduce-real_wf
∀[k:ℕ+]. ∀[x:ℝ]. ∀[b:{b:ℝ| r0 < b} ].  (reduce-real(x;b;k) ∈ {n:ℤ| |x - r(n) * b| ≤ (b + (b/r(k)))} )
Proof
Definitions occuring in Statement : 
reduce-real: reduce-real(x;b;k)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rless: x < y
, 
rabs: |x|
, 
rsub: x - y
, 
rmul: a * b
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
reduce-real: reduce-real(x;b;k)
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
rge: x ≥ y
Lemmas referenced : 
sq_stable__rless, 
int-to-real_wf, 
integer-approx_wf, 
rdiv_wf, 
rless_wf, 
rmul_preserves_rleq2, 
rabs_wf, 
rsub_wf, 
radd_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
zero-rleq-rabs, 
rleq_wf, 
rmul_wf, 
real_wf, 
nat_plus_wf, 
rleq_weakening_rless, 
req_weakening, 
rminus_wf, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
itermAdd_wf, 
itermMinus_wf, 
rleq_weakening_equal, 
req_functionality, 
rabs-of-nonneg, 
rleq_functionality, 
req_transitivity, 
rmul_functionality, 
rabs_functionality, 
radd_functionality, 
rinv-mul-as-rdiv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
real_term_value_const_lemma, 
req_inversion, 
rabs-rmul, 
rmul-rinv3, 
rleq_functionality_wrt_implies, 
rdiv_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
independent_isectElimination, 
inrFormation_alt, 
universeIsType, 
applyEquality, 
lambdaEquality_alt, 
dependent_set_memberEquality_alt, 
closedConclusion, 
productElimination, 
applyLambdaEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
promote_hyp, 
inhabitedIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setIsType, 
isectIsTypeImplies
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  r0  <  b\}  ].    (reduce-real(x;b;k)  \mmember{}  \{n:\mBbbZ{}|  |x  -  r(n)  *  b|  \mleq{}  (b  +  (b/r(k)))\}  \000C)
Date html generated:
2019_10_29-AM-10_09_22
Last ObjectModification:
2019_02_03-PM-03_15_46
Theory : reals
Home
Index