Nuprl Lemma : reduce-real_wf

[k:ℕ+]. ∀[x:ℝ]. ∀[b:{b:ℝr0 < b} ].  (reduce-real(x;b;k) ∈ {n:ℤ|x r(n) b| ≤ (b (b/r(k)))} )


Proof




Definitions occuring in Statement :  reduce-real: reduce-real(x;b;k) rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| rsub: y rmul: b radd: b int-to-real: r(n) real: nat_plus: + uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] sq_stable: SqStable(P) implies:  Q squash: T reduce-real: reduce-real(x;b;k) uimplies: supposing a rneq: x ≠ y or: P ∨ Q prop: subtype_rel: A ⊆B nat_plus: + guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q rless: x < y sq_exists: x:A [B[x]] decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2 rge: x ≥ y
Lemmas referenced :  sq_stable__rless int-to-real_wf integer-approx_wf rdiv_wf rless_wf rmul_preserves_rleq2 rabs_wf rsub_wf radd_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf zero-rleq-rabs rleq_wf rmul_wf real_wf nat_plus_wf rleq_weakening_rless req_weakening rminus_wf rinv_wf2 itermSubtract_wf itermMultiply_wf itermAdd_wf itermMinus_wf rleq_weakening_equal req_functionality rabs-of-nonneg rleq_functionality req_transitivity rmul_functionality rabs_functionality radd_functionality rinv-mul-as-rdiv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_minus_lemma real_term_value_const_lemma req_inversion rabs-rmul rmul-rinv3 rleq_functionality_wrt_implies rdiv_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut setElimination thin rename extract_by_obid sqequalHypSubstitution dependent_functionElimination isectElimination natural_numberEquality hypothesis hypothesisEquality independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination because_Cache independent_isectElimination inrFormation_alt universeIsType applyEquality lambdaEquality_alt dependent_set_memberEquality_alt closedConclusion productElimination applyLambdaEquality unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation promote_hyp inhabitedIsType axiomEquality equalityTransitivity equalitySymmetry setIsType isectIsTypeImplies

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  r0  <  b\}  ].    (reduce-real(x;b;k)  \mmember{}  \{n:\mBbbZ{}|  |x  -  r(n)  *  b|  \mleq{}  (b  +  (b/r(k)))\}  \000C)



Date html generated: 2019_10_29-AM-10_09_22
Last ObjectModification: 2019_02_03-PM-03_15_46

Theory : reals


Home Index