Nuprl Lemma : integer-approx_wf

[x:ℝ]. ∀[k:ℕ+].  (integer-approx(x;k) ∈ {n:ℤ|x r(n)| ≤ (r1 (r1/r(k)))} )


Proof




Definitions occuring in Statement :  integer-approx: integer-approx(x;k) rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y radd: b int-to-real: r(n) real: nat_plus: + uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T integer-approx: integer-approx(x;k) nequal: a ≠ b ∈  nat_plus: + not: ¬A implies:  Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top and: P ∧ Q prop: rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y real: guard: {T} rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) subtype_rel: A ⊆B rational-approx: (x within 1/n) uiff: uiff(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2 sq_type: SQType(T) true: True squash: T nat: int_nzero: -o
Lemmas referenced :  nat_plus_properties full-omega-unsat intformand_wf intformeq_wf itermMultiply_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf rational-approx-property rleq_functionality_wrt_implies rabs_wf rsub_wf int-to-real_wf radd_wf rational-approx_wf rleq_weakening_equal r-triangle-inequality2 rdiv_wf rless-int decidable__lt intformnot_wf int_formula_prop_not_lemma rless_wf radd_functionality_wrt_rleq rleq_wf nat_plus_wf real_wf rabs-rmul int_subtype_base istype-less_than rmul_wf int-rdiv_wf nat_plus_inc_int_nzero rinv_wf2 rminus_wf itermSubtract_wf itermAdd_wf itermMinus_wf req_functionality rmul_functionality req_weakening rsub_functionality int-rdiv-req req_transitivity radd_functionality rmul-rinv rminus_functionality rmul-int req_inversion rminus-int radd-int req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_minus_lemma real_term_value_const_lemma subtype_base_sq div_rem_sum decidable__equal_int add-is-int-iff multiply-is-int-iff int_term_value_add_lemma int_term_value_minus_lemma false_wf rabs-of-nonneg rleq-int decidable__le intformle_wf int_formula_prop_le_lemma rmul_preserves_rleq req_wf squash_wf true_wf iff_weakening_equal rless_functionality rleq_functionality rabs_functionality rabs-int absval_wf rem_bounds_absval_le nequal_wf subtype_rel_self rleq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule dependent_set_memberEquality_alt divideEquality because_Cache extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation universeIsType closedConclusion inrFormation_alt productElimination unionElimination equalityTransitivity equalitySymmetry axiomEquality isectIsTypeImplies inhabitedIsType multiplyEquality applyEquality equalityIstype baseApply baseClosed sqequalBase applyLambdaEquality remainderEquality addEquality minusEquality instantiate cumulativity intEquality pointwiseFunctionality promote_hyp imageElimination imageMemberEquality universeEquality

Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[k:\mBbbN{}\msupplus{}].    (integer-approx(x;k)  \mmember{}  \{n:\mBbbZ{}|  |x  -  r(n)|  \mleq{}  (r1  +  (r1/r(k)))\}  )



Date html generated: 2019_10_29-AM-10_08_58
Last ObjectModification: 2019_02_03-PM-02_38_42

Theory : reals


Home Index