Nuprl Lemma : integer-approx_wf
∀[x:ℝ]. ∀[k:ℕ+].  (integer-approx(x;k) ∈ {n:ℤ| |x - r(n)| ≤ (r1 + (r1/r(k)))} )
Proof
Definitions occuring in Statement : 
integer-approx: integer-approx(x;k)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rsub: x - y
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
integer-approx: integer-approx(x;k)
, 
nequal: a ≠ b ∈ T 
, 
nat_plus: ℕ+
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
real: ℝ
, 
guard: {T}
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
rational-approx: (x within 1/n)
, 
uiff: uiff(P;Q)
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
sq_type: SQType(T)
, 
true: True
, 
squash: ↓T
, 
nat: ℕ
, 
int_nzero: ℤ-o
Lemmas referenced : 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
rational-approx-property, 
rleq_functionality_wrt_implies, 
rabs_wf, 
rsub_wf, 
int-to-real_wf, 
radd_wf, 
rational-approx_wf, 
rleq_weakening_equal, 
r-triangle-inequality2, 
rdiv_wf, 
rless-int, 
decidable__lt, 
intformnot_wf, 
int_formula_prop_not_lemma, 
rless_wf, 
radd_functionality_wrt_rleq, 
rleq_wf, 
nat_plus_wf, 
real_wf, 
rabs-rmul, 
int_subtype_base, 
istype-less_than, 
rmul_wf, 
int-rdiv_wf, 
nat_plus_inc_int_nzero, 
rinv_wf2, 
rminus_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermMinus_wf, 
req_functionality, 
rmul_functionality, 
req_weakening, 
rsub_functionality, 
int-rdiv-req, 
req_transitivity, 
radd_functionality, 
rmul-rinv, 
rminus_functionality, 
rmul-int, 
req_inversion, 
rminus-int, 
radd-int, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
real_term_value_const_lemma, 
subtype_base_sq, 
div_rem_sum, 
decidable__equal_int, 
add-is-int-iff, 
multiply-is-int-iff, 
int_term_value_add_lemma, 
int_term_value_minus_lemma, 
false_wf, 
rabs-of-nonneg, 
rleq-int, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
rmul_preserves_rleq, 
req_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
rless_functionality, 
rleq_functionality, 
rabs_functionality, 
rabs-int, 
absval_wf, 
rem_bounds_absval_le, 
nequal_wf, 
subtype_rel_self, 
rleq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
dependent_set_memberEquality_alt, 
divideEquality, 
because_Cache, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
closedConclusion, 
inrFormation_alt, 
productElimination, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
multiplyEquality, 
applyEquality, 
equalityIstype, 
baseApply, 
baseClosed, 
sqequalBase, 
applyLambdaEquality, 
remainderEquality, 
addEquality, 
minusEquality, 
instantiate, 
cumulativity, 
intEquality, 
pointwiseFunctionality, 
promote_hyp, 
imageElimination, 
imageMemberEquality, 
universeEquality
Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[k:\mBbbN{}\msupplus{}].    (integer-approx(x;k)  \mmember{}  \{n:\mBbbZ{}|  |x  -  r(n)|  \mleq{}  (r1  +  (r1/r(k)))\}  )
Date html generated:
2019_10_29-AM-10_08_58
Last ObjectModification:
2019_02_03-PM-02_38_42
Theory : reals
Home
Index