Nuprl Lemma : rv-Tsep-alt

n:ℕ. ∀a,b,c,d:ℝ^n.  ((¬¬(∃u,v,w:ℝ^n. (rv-T(n;u;v;w) ∧ ab=uv ∧ cd=uw)))  a ≠  c ≠ d)


Proof




Definitions occuring in Statement :  rv-T: rv-T(n;a;b;c) real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec: ^n nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q real-vec-sep: a ≠ b member: t ∈ T guard: {T} uall: [x:A]. B[x] subtype_rel: A ⊆B prop: uimplies: supposing a so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] not: ¬A exists: x:A. B[x] false: False rv-T: rv-T(n;a;b;c) or: P ∨ Q true: True rv-congruent: ab=cd uiff: uiff(P;Q) iff: ⇐⇒ Q rge: x ≥ y rless: x < y sq_exists: x:{A| B[x]} nat_plus: + nat: ge: i ≥  less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  rless_transitivity1 int-to-real_wf real-vec-dist_wf real_wf rleq_wf real-vec-sep_wf not_wf exists_wf real-vec_wf rv-T_wf rv-congruent_wf nat_wf not-rless rless_wf false_wf or_wf true_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle real-vec-dist-be radd_wf req_functionality req_inversion radd_functionality req_weakening rless_functionality real-vec-dist-nonneg rless_functionality_wrt_implies radd_functionality_wrt_rleq rleq_weakening_equal nat_plus_properties nat_properties satisfiable-full-omega-tt intformless_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf radd_comm radd-zero-both not-real-vec-sep-iff-eq rv-congruent_functionality req-vec_weakening real-vec-dist-same-zero rleq_weakening rless_irreflexivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut hypothesis introduction extract_by_obid dependent_functionElimination thin isectElimination natural_numberEquality hypothesisEquality applyEquality lambdaEquality setElimination rename setEquality sqequalRule because_Cache independent_functionElimination independent_isectElimination productEquality productElimination voidElimination functionEquality unionElimination equalityTransitivity equalitySymmetry imageElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality computeAll promote_hyp

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,d:\mBbbR{}\^{}n.    ((\mneg{}\mneg{}(\mexists{}u,v,w:\mBbbR{}\^{}n.  (rv-T(n;u;v;w)  \mwedge{}  ab=uv  \mwedge{}  cd=uw)))  {}\mRightarrow{}  a  \mneq{}  b  {}\mRightarrow{}  c  \mneq{}  d)



Date html generated: 2016_10_28-AM-07_29_46
Last ObjectModification: 2016_10_26-PM-02_08_56

Theory : reals


Home Index