Nuprl Lemma : rv-Tsep-alt
∀n:ℕ. ∀a,b,c,d:ℝ^n.  ((¬¬(∃u,v,w:ℝ^n. (rv-T(n;u;v;w) ∧ ab=uv ∧ cd=uw))) 
⇒ a ≠ b 
⇒ c ≠ d)
Proof
Definitions occuring in Statement : 
rv-T: rv-T(n;a;b;c)
, 
real-vec-sep: a ≠ b
, 
rv-congruent: ab=cd
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
real-vec-sep: a ≠ b
, 
member: t ∈ T
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
not: ¬A
, 
exists: ∃x:A. B[x]
, 
false: False
, 
rv-T: rv-T(n;a;b;c)
, 
or: P ∨ Q
, 
true: True
, 
rv-congruent: ab=cd
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rge: x ≥ y
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
ge: i ≥ j 
, 
less_than: a < b
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
Lemmas referenced : 
rless_transitivity1, 
int-to-real_wf, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
real-vec-sep_wf, 
not_wf, 
exists_wf, 
real-vec_wf, 
rv-T_wf, 
rv-congruent_wf, 
nat_wf, 
not-rless, 
rless_wf, 
false_wf, 
or_wf, 
true_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
real-vec-dist-be, 
radd_wf, 
req_functionality, 
req_inversion, 
radd_functionality, 
req_weakening, 
rless_functionality, 
real-vec-dist-nonneg, 
rless_functionality_wrt_implies, 
radd_functionality_wrt_rleq, 
rleq_weakening_equal, 
nat_plus_properties, 
nat_properties, 
satisfiable-full-omega-tt, 
intformless_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
radd_comm, 
radd-zero-both, 
not-real-vec-sep-iff-eq, 
rv-congruent_functionality, 
req-vec_weakening, 
real-vec-dist-same-zero, 
rleq_weakening, 
rless_irreflexivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
sqequalRule, 
because_Cache, 
independent_functionElimination, 
independent_isectElimination, 
productEquality, 
productElimination, 
voidElimination, 
functionEquality, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
promote_hyp
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,d:\mBbbR{}\^{}n.    ((\mneg{}\mneg{}(\mexists{}u,v,w:\mBbbR{}\^{}n.  (rv-T(n;u;v;w)  \mwedge{}  ab=uv  \mwedge{}  cd=uw)))  {}\mRightarrow{}  a  \mneq{}  b  {}\mRightarrow{}  c  \mneq{}  d)
Date html generated:
2016_10_28-AM-07_29_46
Last ObjectModification:
2016_10_26-PM-02_08_56
Theory : reals
Home
Index