Nuprl Lemma : approx-iter-arcsine_wf

[a:{a:ℝ(r(-1) < a) ∧ (a < r1)} ]. ∀[n:ℕ]. ∀[k:ℕ+].
  (approx-iter-arcsine(a;k;n) ∈ {y:ℤ|arcsine-contraction^n(a) (r(y))/2 k| ≤ (r(2)/r(k))} )


Proof




Definitions occuring in Statement :  approx-iter-arcsine: approx-iter-arcsine(a;k;n) iter-arcsine-contraction: arcsine-contraction^n(a) rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| int-rdiv: (a)/k1 rsub: y int-to-real: r(n) real: nat_plus: + nat: uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  multiply: m minus: -n natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: approx-iter-arcsine: approx-iter-arcsine(a;k;n) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] iter-arcsine-contraction: arcsine-contraction^n(a) real: int_nzero: -o nat_plus: + nequal: a ≠ b ∈  subtype_rel: A ⊆B rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q rational-approx: (x within 1/n) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y squash: T true: True sq_type: SQType(T) bfalse: ff has-value: (a)↓ less_than: a < b less_than': less_than'(a;b) sq_stable: SqStable(P) bool: 𝔹 unit: Unit it: bnot: ¬bb assert: b compose: g cand: c∧ B le: A ≤ B
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf nat_plus_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf set_wf real_wf rless_wf int-to-real_wf fun_exp0_lemma rleq_wf rabs_wf rsub_wf int-rdiv_wf nat_plus_properties intformeq_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_mul_lemma equal-wf-base int_subtype_base nequal_wf rdiv_wf rless-int decidable__lt rational-approx_wf rleq-int-fractions rleq_functionality_wrt_implies rational-approx-property rleq_weakening_equal subtype_base_sq bool_wf bool_subtype_base equal_wf squash_wf true_wf eq_int_eq_false bfalse_wf iff_weakening_equal value-type-has-value int-value-type mul_nat_plus iter-arcsine-contraction_wf sq_stable__rleq le_wf equal-wf-T-base fun_exp_unroll rneq-int eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal assert-bnot neg_assert_of_eq_int arcsine-contraction_wf arcsine-contraction-difference rmul_wf zero-rleq-rabs rleq-int false_wf rleq_functionality rmul_comm req_weakening rmul_functionality_wrt_rleq2 uiff_transitivity rmul-int-rdiv radd_wf r-triangle-inequality2 radd_functionality_wrt_rleq itermAdd_wf int_term_value_add_lemma req_transitivity radd-rdiv rdiv_functionality radd-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry callbyvalueReduce sqleReflexivity unionElimination because_Cache productEquality minusEquality dependent_set_memberEquality applyEquality multiplyEquality baseApply closedConclusion baseClosed inrFormation productElimination instantiate cumulativity imageElimination universeEquality imageMemberEquality applyLambdaEquality setEquality equalityElimination promote_hyp inlFormation addEquality

Latex:
\mforall{}[a:\{a:\mBbbR{}|  (r(-1)  <  a)  \mwedge{}  (a  <  r1)\}  ].  \mforall{}[n:\mBbbN{}].  \mforall{}[k:\mBbbN{}\msupplus{}].
    (approx-iter-arcsine(a;k;n)  \mmember{}  \{y:\mBbbZ{}|  |arcsine-contraction\^{}n(a)  -  (r(y))/2  *  k|  \mleq{}  (r(2)/r(k))\}  )



Date html generated: 2017_10_04-PM-10_50_07
Last ObjectModification: 2017_07_28-AM-08_51_42

Theory : reals_2


Home Index