Nuprl Lemma : C_TYPE-valueall-type
valueall-type(C_TYPE())
Proof
Definitions occuring in Statement :
C_TYPE: C_TYPE()
,
valueall-type: valueall-type(T)
Definitions unfolded in proof :
valueall-type: valueall-type(T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
has-value: (a)↓
,
prop: ℙ
,
nat: ℕ
,
false: False
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
guard: {T}
,
subtype_rel: A ⊆r B
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
decidable: Dec(P)
,
or: P ∨ Q
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
ext-eq: A ≡ B
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
sq_type: SQType(T)
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
C_Void: C_Void()
,
C_TYPE_size: C_TYPE_size(p)
,
select: L[n]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
evalall: evalall(t)
,
bfalse: ff
,
bnot: ¬bb
,
assert: ↑b
,
C_Int: C_Int()
,
C_Struct: C_Struct(fields)
,
so_lambda: λ2x.t[x]
,
less_than: a < b
,
squash: ↓T
,
so_apply: x[s]
,
cand: A c∧ B
,
C_Array: C_Array(length;elems)
,
pi2: snd(t)
,
C_Pointer: C_Pointer(to)
,
nil: []
,
subtract: n - m
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
nat_plus: ℕ+
,
true: True
,
cons: [a / b]
Lemmas referenced :
int-valueall-type,
set-valueall-type,
atom-valueall-type,
add-is-int-iff,
nat_plus_properties,
nat_plus_wf,
add_nat_plus,
add-subtract-cancel,
assert_of_bnot,
iff_weakening_uiff,
iff_transitivity,
assert_of_le_int,
bool_cases,
not_wf,
bnot_wf,
assert_wf,
le_int_wf,
select-cons,
add-member-int_seg2,
evalall-cons,
length_of_cons_lemma,
length_of_nil_lemma,
int_subtype_base,
set_subtype_base,
subtype_rel_self,
product_subtype_base,
list_subtype_base,
all_wf,
list_induction,
list_wf,
C_TYPE_subtype_base,
subtype_rel_product,
subtype_rel_list,
is-exception_wf,
has-value_wf_base,
nat_wf,
sum-nat-less,
int_term_value_add_lemma,
itermAdd_wf,
pi2_wf,
decidable__lt,
length_wf,
select_wf,
length_wf_nat,
sum-nat,
neg_assert_of_eq_atom,
assert-bnot,
bool_subtype_base,
bool_cases_sqequal,
equal_wf,
eqff_to_assert,
stuck-spread,
it_wf,
unit_subtype_base,
atom_subtype_base,
subtype_base_sq,
assert_of_eq_atom,
eqtt_to_assert,
bool_wf,
eq_atom_wf,
C_TYPE-ext,
int_formula_prop_eq_lemma,
intformeq_wf,
lelt_wf,
false_wf,
int_seg_subtype,
decidable__equal_int,
int_term_value_subtract_lemma,
int_formula_prop_not_lemma,
itermSubtract_wf,
intformnot_wf,
subtract_wf,
decidable__le,
int_seg_properties,
int_seg_wf,
C_TYPE_size_wf,
le_wf,
less_than_wf,
ge_wf,
int_formula_prop_wf,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_and_lemma,
intformless_wf,
itermVar_wf,
itermConstant_wf,
intformle_wf,
intformand_wf,
satisfiable-full-omega-tt,
nat_properties,
base_wf,
equal-wf-base,
C_TYPE_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
equalityTransitivity,
hypothesis,
equalitySymmetry,
thin,
lemma_by_obid,
lambdaFormation,
equalityEquality,
hypothesisEquality,
dependent_functionElimination,
independent_functionElimination,
sqequalRule,
axiomSqleEquality,
isectElimination,
because_Cache,
isect_memberEquality,
setElimination,
rename,
intWeakElimination,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
applyEquality,
productElimination,
unionElimination,
setEquality,
hypothesis_subsumption,
dependent_set_memberEquality,
promote_hyp,
tokenEquality,
equalityElimination,
instantiate,
cumulativity,
atomEquality,
baseClosed,
productEquality,
imageElimination,
callbyvalueReduce,
sqleReflexivity,
addEquality,
divergentSqle,
functionEquality,
baseApply,
closedConclusion,
impliesFunctionality,
imageMemberEquality,
pointwiseFunctionality
Latex:
valueall-type(C\_TYPE())
Date html generated:
2016_05_16-AM-08_46_17
Last ObjectModification:
2016_01_17-AM-09_44_10
Theory : C-semantics
Home
Index