Nuprl Lemma : maybe-new_wf

[s:Name]. ∀[avoid:Name List].  (maybe-new(s;avoid) ∈ {s':Name| ¬(s' ∈ avoid)} )


Proof




Definitions occuring in Statement :  maybe-new: maybe-new(s;avoid) name: Name l_member: (x ∈ l) list: List uall: [x:A]. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T maybe-new: maybe-new(s;avoid) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt iff: ⇐⇒ Q and: P ∧ Q prop: rev_implies:  Q ifthenelse: if then else fi  let: let bfalse: ff not: ¬A false: False name: Name name-deq: NameDeq so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q l_member: (x ∈ l) cand: c∧ B nat: guard: {T} int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top pi1: fst(t) uiff: uiff(P;Q) inject: Inj(A;B;f) squash: T true: True
Lemmas referenced :  deq-member_wf name_wf name-deq_wf bool_wf iff_transitivity equal-wf-T-base assert_wf l_member_wf iff_weakening_uiff eqtt_to_assert assert-deq-member bnot_wf not_wf eqff_to_assert assert_of_bnot equal_wf list_wf list-deq_wf atom-deq_wf append_wf nat-to-str_wf exists_wf nat_wf decidable__exists_int_seg length_wf int_seg_subtype_nat false_wf int_seg_wf decidable__not decidable__l_member decidable__equal_list decidable__atom_equal less_than_wf select_wf nat_properties int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf all_wf non_neg_length lelt_wf length_wf_nat pigeon-hole add_nat_wf le_wf add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma squash_wf true_wf iff_weakening_equal decidable__equal_int str-to-nat-to-str str-to-nat_wf general-append-cancellation mu-property deq_wf mu_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry baseClosed independent_functionElimination because_Cache independent_pairFormation dependent_functionElimination productElimination impliesFunctionality voidElimination dependent_set_memberEquality axiomEquality isect_memberEquality atomEquality lambdaEquality addLevel existsFunctionality instantiate natural_numberEquality addEquality applyEquality independent_isectElimination dependent_pairFormation promote_hyp productEquality setElimination rename int_eqEquality intEquality voidEquality computeAll functionExtensionality applyLambdaEquality pointwiseFunctionality baseApply closedConclusion imageElimination universeEquality imageMemberEquality cumulativity inlFormation

Latex:
\mforall{}[s:Name].  \mforall{}[avoid:Name  List].    (maybe-new(s;avoid)  \mmember{}  \{s':Name|  \mneg{}(s'  \mmember{}  avoid)\}  )



Date html generated: 2017_04_17-AM-09_18_29
Last ObjectModification: 2017_02_27-PM-05_22_42

Theory : decidable!equality


Home Index